人才信息库
王春阳
性 别 最高学历 博士研究生
职 称 研究员 专家类别  
部 门 沈阳材料科学国家研究中心/材料结构与缺陷研究部
通讯地址 辽宁省沈阳市沈河区文化路72号,中国科学院金属研究所,材料结构与缺陷研究部
邮政编码 110016 电子邮件 wangchunyang@imr.ac.cn
电 话 15904061124 传 真  
简历:

国家级青年人才

2024.01至今    中国科学院金属研究所 研究员

2019.06--2023.12  美国加州大学尔湾分校 博士后

2014.09--2019.06  中国科学院金属研究所 博士

2010.09--2014.06  中国矿业大学 材料科学与工程专业 学士

   王春阳,中国科学院金属研究所沈阳材料科学国家研究中心研究员,国家级青年人才。王春阳2014年本科毕业于中国矿业大学材料科学与工程专业,2019年博士毕业于中国科学院金属研究所(导师:杜奎研究员)。博士期间他在沈阳材料科学国家研究中心杜奎研究员团队学习原位定量电子显微学和电子显微学三维成像技术,并开展纳米金属的形变与相变机制研究。2019年6月后在加州大学尔湾分校和布鲁克海文国家实验室开展博后研究,利用多尺度(三维/原位)TEM技术开展锂电正极/电解质/负极材料的失效机理和构效关系研究。聚焦金属、能源材料基础科学问题,他利用原位定量电子显微学和电子层析三维TEM成像技术系统深入揭示了金属、金属氧化物等结构/功能材料的结构-性能关系,取得了系列原创成果。代表性成果主要有: 1)系统揭示了锂离子电池正极层状氧化物中的相变新机制、缺陷演化和复杂相界面结构,该系列研究成果被成功应用于指导新型正极层状氧化物材料的设计与开发。相关研究成果发表在Nature、Nature Materials、Nature Energy、Matter、Nano Letters等期刊。2)利用冷冻电镜和原位透射电镜技术揭示了锂金属的形核、生长和剥离机制,相关研究成果发表在Nature Energy、Nature Nanotechnology、EES、Advanced Materials、ACS Energy Letters等期刊。3)实现金属晶界、表面的三维原子结构成像和定量分析,研究成果发表在Matter等期刊。4)发现金属晶界结构的尺寸效应。该尺寸效应系首次在金属材料中被发现,打破了只有小角晶界(取向差小于15°)才能由位错墙组成的传统认识,相关研究成果发表在PRL。目前,他已在Nature、Nature Materials、Nature Energy、Nature Nanotechnology、PRL、Matter、Advanced Materials、Nano Letters、EES、ACS Energy Letters、Nature Communications、JACS、Angewandte Chemie、Chemical Reviews等期刊发表论文60余篇。

研究领域:

透射电子显微学;金属材料;锂离子电池材料

研究方向总结:聚焦金属、能源(电池)材料基础科学问题,通过发展原位定量电子显微学、电子层析三维成像技术和人工智能透射电镜技术揭示材料的结构-性能关系,指导高性能金属、能源材料开发和结构性能优化。


承担科研项目情况:
社会任职:
美国布鲁克海文国家实验室功能纳米材料中心提案评审委员会委员
美国布鲁克海文国家实验室功能纳米材料中心用户委员会委员
美国电子显微学会(MSA)会员
顶级电镜大会Microscopy & Microanalysis 2020电镜三维成像分会主席
获奖及荣誉:

美国电子显微学会(MSA)Postdoctoral Scholar Award (2022)

国家奖学金、师昌绪二等奖学金 、辽宁省金属学会优秀科技论文一等奖、二等奖(2014-2019)

国家奖学金、江苏省优秀本科毕业论文奖等(2010-2014)

代表论著:

[1] C.Y. Wang, X.L. Wang, R. Zhang, T.J. Lei, K. Kisslinger, H.L. Xin. Resolving complex intralayer transition motifs in high-Ni-content layered cathode materials for lithium-ion batteries. Nature Materials, 22, 235-241 (2023)

[2] C.Y. Wang, K. Du, K.P. Song, X.L. Ye, L. Qi, S.Y. He, D.M. Tang, N. Lu, H.J. Jin, F. Li, H.Q. Ye. Size-dependent grain-boundary structure with improved conductive and mechanical stabilities in sub-10-nm gold crystals. Physical Review Letters, 120, 186102 (2018)

[3] C.Y. Wang, H.C. Duan, C.J. Chen, P. Wu, D.Q. Qi, H.Q. Ye, H.J. Jin, H.L. Xin, K. Du. Three-Dimensional Atomic Structure of Grain Boundaries Resolved by Atomic-Resolution Electron Tomography. Matter, 3(6),1999-2011 (2020)

[4] R. Zhang#, C.Y. Wang#, P. Zou, R. Lin, L. Ma, T. Li, W. Xu, H. Jia, Q. Li, S. Sainio, K. Kisslinger, S. Trask, S.N. Ehrlich, Y. Yang, A.M. Kiss, M. Ge, B. Polzin, S.J. Lee, W. Xu, Y. Ren, H.L. Xin. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature, 610, 67-73 (2022)

[5] R. Zhang#, C.Y. Wang#, P. Zou, R. Lin, L. Ma, T. Li, I. Hwang, W. Xu, C. Sun, S. Trask, H.L. Xin. Low-cost long-life lithium-ion battery realized by Low-Ni Co-free cathode chemistry. Nature Energy, 8, 695-702(2023)

[6] C.Y. Wang, X.L. Wang, P.C. Zou, R. Zhang, S.F. Wang, B.H. Song, K.B. Low, H.L. Xin. Direct observation of chemomechanical stress-induced phase transformation in high-Ni layered cathodes for lithium-ion batteries. Matter, 6(4), 1265-1277 (2023)

[7] C.Y. Wang, L.L. Han, R. Zhang, H. Cheng, L.Q. Mu, K. Kisslinger, P.C. Zou, Y. Ren, P.H. Cao, F. Lin, H.L. Xin. Resolving atomic-scale phase transformation and oxygen loss mechanism in ultrahigh-nickel layered cathodes for cobalt-free lithium-ion batteries. Matter, 4(6), 2013-2026 (2021)

[8]C.Y. Wang, R. Lin, Y. He, P. Zou, K. Kisslinger, Q. He, J. Li, H.L. Xin. Tension-induced cavitation in Li metal stripping. Advanced Materials, 35, 202209091 (2023)

[9] C.Y. Wang, R. Zhang, C. Siu, M.Y. Ge, K. Kisslinger, Y. Shin, H.L. Xin. Chemomechanically Stable Ultrahigh-Ni Single-Crystalline Cathodes with Improved Oxygen Retention and Delayed Phase Degradations. Nano Letters, 21(22), 9797-9804 (2021)

[10] C.Y. Wang, R. Zhang, K. Kisslinger, H.L. Xin. Atomic-Scale Observation of O1 Faulted Phase-Induced Deactivation of LiNiO2 at High Voltage. Nano Letters, 21(8), 3657-3663 (2021)

[11] C.Y. Wang, H. Wang, L. Tao, X. Wang, P.H. Cao, F. Lin, H.L. Xin. Direct observation of nucleation and growth behaviors of lithium by in-situ electron microscopy. ACS Energy Letters, 8, 1929-1935 (2023)

[12] D. Zhu#, C.Y. Wang#, P. Zou, R. Zhang, S. Wang, B. Song, X. Yang, K. Low, H.L. Xin. Deep-learning aided atomic-scale phase segmentation towards diagnosing complex oxide cathodes for lithium-ion batteries. Nano Letters, 23 (17), 8272-8279 (2023)

[13] R. Zhang#, C.Y. Wang#, M.Y. Ge, H.L. Xin. Accelerated Degradation in a Quasi-Single-Crystalline Layered Oxide Cathode for Lithium-Ion Batteries Caused by Residual Grain Boundaries. Nano Letters, 22(9), 3818-3824 (2022)

[14] X.L. Wang#, C.Y. Wang#, C.J. Chen, H.C. Duan, K. Du. Free-standing Monatomic Thick Two-dimensional Gold. Nano Letters, 19(7), 4560 (2019)

[15] P.C. Zou#, C.Y. Wang#, Y. He, H.L. Xin. Broadening solid ionic conductor selection for sustainable and earth-abundant solid-state lithium metal batteries. Energy & Environmental Science, 16(12), 5871-5880 (2023)

[16] P.C. Zou#, C.Y. Wang#, J.Y. Qin#, R. Zhang, H.L. Xin. A reactive wetting strategy improves lithium metal reversibility. Energy Storage Materials, 58, 176-183 (2023)

[17] S.M. Zheng#, C.Y. Wang#, X. Yuan, H.L. Xin. Super-compression of large electron microscopy time series by deep compressive sensing learning. Patterns, 2, 100292 (2021)

[18] C.Y. Wang, H.Y. Liu, H.C. Duan, Z.W. Li, P.L. Zeng, P.C. Zou, X.L. Wang, H.Q. Ye, H.L. Xin, K. Du. 3D atomic imaging of low-coordinated active sites in a solid-state dealloyed hierarchical nanoporous gold. Journal of Materials Chemistry A, 9 (45), 25513-25521 (2021)

[19] C.Y. Wang, G.L. Ding, Y.T. Liu, H.L. Xin. 0.71-? resolution electron tomography enabled by deep learning aided information recovery. Advanced Intelligent Systems, 2(12), 2000152 (2020)

[20] C.Y. Wang, M.D. Qin, T.J. Lei, Y.B. He, K. Kisslinger, T.J. Rupert, J. Luo, H.L. Xin. Synergic grain boundary segregation and precipitation in W-and W-Mo-containing high-entropy borides. Journal of the European Ceramic Society, 41 (10), 5380-5387 (2021)

[21] C.Y. Wang, M.D. Qin, T.J. Lei, L. Wan, S. Shivakumar, K. Kisslinger, T.J. Rupert, J. Luo, H.L. Xin. Compositional inhomogeneity and its effect on the hardness of nanostructured refractory high-entropy alloys. Materials Characterization, 207, 113563 (2024)

[22] 王春阳, 杜奎. 超纳尺寸 Au 中孪晶界可逆迁移的原位电子显微学研究. 电子显微学报, 38(4), 329-333 (2019)

[23] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征. 电子显微学报, 38(4), 329-333 (2023)

近期国际国内会议报告:

1. 2023.08, M&M2023, Poster “Atomic-Scale Understanding of New Phase Transition Pathway and Phase Boundary Structures in Layered Oxide Cathodes for Lithium-Ion Batteries”, Minneapolis, Minnesota, USA.

2. 2023.04, Brookhaven National Laboratory Users’ Meeting, 邀请报告 “Resolving new phase transformation and phase boundary structures in layered oxide cathodes for lithium-ion batteries”, Long Island, NY, USA.

3. 2023.03,TMS2023, 邀请报告 “Computer Vision Problems in Transmission Electron Microscopy”, San Diego, CA, USA.

4. 2023.03,TMS2023, Poster “Building an ImageNet for Materials Grain Boundaries”, San Diego, CA, USA.

5. 2023.03,TMS2023, Poster “TEM Investigation of the Strengthening Effects from Grain Boundary Segregation and Precipitation in W- and W-Mo-containing High-entropy Borides”, San Diego, CA, USA.

6. 2022.11, California Research Alliance (by BASF) 2022 Review meeting at UC Santa Barbara, 口头报告“Elucidating Atomic Structures of BASF Materials by AI-TEM”, Santa Barbara, CA, USA.

7. 2022.08, M&M2022, Postdoc Scholar Award口头报告“In-Situ TEM Study of Chemo-Mechanical Degradation Pathways of LiNiO2-Derived Layered Oxide Cathodes for Lithium-Ion Batteries”, Portland, OR, USA.

8. 2021.05, 239th ECS Meeting, 邀请报告 “Electro-Chemo-Mechanical Degradation of LiNiO2-Derived High-Ni-Content Cathode Materials”, Virtual Meeting.

9. 2018.07, 中国材料大会, 口头报告 “Quantitative In-situ Electron Microscopy Investigation on the Size Effect of Grain Boundaries in Sub-10-nm Gold Crystals”, 中国厦门.

个人网页:
https://www.researchgate.net/profile/Chunyang-Wang-7