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ABSTRACT A brief overview is provided about the plastic deformation mechanisms in nanotwinned metals.

The unique two-dementional nanoscale twin lamellae lead to different dislocation slip systems activated during
plastic deformation. It has been revealed that there are three distinctly different dislocation-mediated deformation
mechanisms in nanotwinned metals, namely dislocation pile-up against and slip transfer across twin boundaries,

Shockley partials gliding on twin boundaries leading to twin boundary migration, and threading dislocations slip
confined by neighboring twin boundaries. It is further demonstrated that these three dislocation-mediated mecha-
nisms are switchable upon changing in the loading direction with respect to twin boundaries.

KEY WORDS nano-twinned metal, deformation mechanism, dislocation slip, anisotropy, mechanical property
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Table 1 Slip system categories in fcc nanotwinned metals

No. Category Slip plane Slip direction Miller index
1 Hard mode | DBC DB (111)[011]
2 DBC DC (111)[110]
3 DAC DA (111)[101]
4 DAC DC (111)[110]
5 DAB DA (111)[101]
6 DAB DB (111)[011]
7 Hard mode II DBC BC (11D)[101]
8 DAC AC (111)[011]
9 DAB AB (111)[110]
10 Soft mode ABC AB (111)[110]
1 ABC AC (11D)[011]
12 ABC BC (111)[101]

Note: Planes DBC, DAC, DAB and ABC are the faces of the Thompson tetrahedron (Fig.1), which represent
the four possible {111} slip planes; and directions DB, DC, DA, BC, AC and AB are the edges of the
Thompson tetrahedron (Fig.1), which correspond to the six <110> slip directions of the fcc structure
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(a) a schmatic defining the sample coordinate

(b) variations of Schmid factors as a function of ori-
entation angle « (« is the angle between twin
plane (111) and the loading axis, as shown in
Fig.2a. The numbers in the curves hereinafter
correspond to the slip system number in Table
1, with overscore numbers representing the asso-
ciated slip systems with reversed slip directions,
for example, 1 represents (111) [0T1])
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(a) a schmatic defining the sample coordinate

(b) variations of Schmid factors as a function of ori-
entation angle 3 (3 is the angle between [110] di-
rection in the twin plane and the loading axis, as
shown in Fig.3a)
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TBs™ (LD represents the loading direction. To reveal the dislocation types more clearly, tilting experiments were
carried out, and Figs.5a and b are bright-field images under two-beam conditions with g=[111] (normal to twin

boundary) and g=[200]. (where M represents matrix lamellae), respectively)

(a, d) 90° compression with a strain of about 5%
(b, ) 0° compression with a strain of about 6%
(c, ) 45° compression with a strain of about 7%
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