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ABSTRACT Nanotwinned materials have attracted widespread attention due to their superior mechanical proper-
ties, such as high strength, good ductility and work hardening. Experimental and molecular dynamics (MD) simula-
tion results had indicated that there are three distinctly different dislocation- mediated deformation mechanisms in
nanotwinned metals, namely dislocation pile-up against and slip transfer across twin boundaries (TBs), Shockley par-
tials gliding on twin boundaries leading to twin boundary migration, and threading dislocations slip confined by
neighboring twin boundaries. However, most of the previous studies are focused on the homogenous plastic deforma-
tion under tension and compression tests, the non-homogenous deformation and its deformation mechanism, espe-
cially under low strain and complex stress condition/confined condition, of nanotwinned metals are still not explored
so far. In this study, the electrodeposited bulk Cu samples with preferentially oriented nanotwins were cold rolled
with the normal of the rolling plane parallel to the growth direction (ND//GD) to strain of 15% at room temperature.
The microstructure features of as-rolled Cu were investigated by SEM and TEM. Microstructure evolution indicates
that many detwinning bands appeared in the direction about 30°~45° with respect to the rolling direction, which is
the direction with the largest shearing stress. The twin lamellae in the detwinning bands coarsened obviously. Based
on calculation of the local shear strain and strain gradient of TBs in a selected detwinning band, it indicates that the
maximum shear strain occurs in the middle of the deformation bands, and its detwinning mechanism is directly relat-
ed the localized shear strains (y). The twin lamellae in the detwinning bands were coarsened obviously. When 0.3<y<
0.8, the detwinning process via producing amount of Shockley dislocations on twin boundaries dominates the defor-
mation. After detwinning, Shockley partial dislocations stored at the area with the maximum strain gradient and
formed incoherent twin boundaries (ITBs). The present investigation indicates detwinning process dominates the
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plastic deformation and sustains the local shearing strain in nanotwinned Cu at small strains under cold rolling.

KEY WORDS Cu, nanoscale twin, cold rolling, detwinning, shear strain
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Fig.1 Longitudinal-section SEM-BSE image (a) and TEM bright-field image (b) of the as-deposited columnar-nanotwinned

(nt) Cu sample, and the corresponding selected area electron diffraction (SAED) pattern (inset) (GD—growth direc-

tion of the electro-deposited Cu)
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Fig.2 Longitudinal-section SEM-BSE image of cold rolled

nt-Cu sample showing the deformation bands along
the shear direction indicated by arrows (ND—nor-
mal direction of cold rolling, RD—rolling direction)
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Fig.3 Longitudinal-section TEM image of cold rolled nt-Cu sample, showing a detwinning band (a), SAED patterns corre-

sponding to the regions labeled by b (b) and ¢ (c) in Fig.3a, distributions of twin thickness in as-deposited sample

(d) and detwinning bands of the as rolled sample (e)
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Fig.4 Enlarged TEM image of the square region in Fig.3a (a), schematic of the morphology of the twin boundaries (TBs)

in Fig.4a (b), geometric relation for calculating the shear strain (6—angle of shear direction (AA') to the direction
of original TB (BB'); 6—angle of the shear direction (AA") to the direction of curved TB (CC'); 5—width (trans-
verse to the shear direction) of a unit segment; d—shear displacement of a unit segment) (c) and distributions of

shear strain and strain gradient along the TB marked by the dashed line in Fig.4b (d) (Arrows pointed to the areas

With 7. Of the twin lamellae, ym—maximum value of shear strain)
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Fig.5 Schematics of the detwinning process assisted by
dislocation- TB interaction, where the arrows indicate

the compression stress along ND and the tension

stress along RD during cold rolling

(a) dislocations pile up on TBs

(b) local shear strain makes the TBs curved

(c) Shockley partial dislocations, produced by the in-
teraction of dislocation-TB, glide along TB, and
result in a migration of TB

(d) annihilation of twin lamellae due to motion of
numerous Shockley partial dislocations, which
stop at the end of the twin lamella
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