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A B S T R A C T

In crystalline solids, to computationally determine atomic migration energy barrier is a highly time consuming challenge within the framework of Density Functional
Theory (DFT). Through first-principle calculations, here we have proposed a simple, high-throughput formula to fast, effectively calculate atomic migration energy
barrier for fcc metals through three basic parameters of materials, the equilibrium volume (V0), the bulk modulus (B0) and the Poisson's ratio (ν). This formula is
useful not only for the ideal strain-free lattices but also for the uniaxially strained lattices. It has been further validated by a series of fcc metals when compared with
both available experimental or theoretical data and DFT-derived data obtained by Nudged Elastic Band (NEB) method. Moreover, we have investigated the effect of
uniaxial deformation on the diffusion behavior of vacancy in fcc metals. Our calculations revealed that in fcc metals under uniaxial tensile deformation, vacancy
prefers to diffuse along the direction that is perpendicular to the uniaxial tensile deformation.

1. Introduction

Ions diffusion is responsible for many different materials processes
[1]. Generally, there are two main mechanisms for atomic diffusion in
crystalline solid, the vacancy mechanism and interstitial mechanism. In
the self-diffusion in monoatomic close-packed crystals, the vacancy
mechanism is the most common and dominant means of atomic diffu-
sion [2]. In various metals, all elements self-diffusion usually proceeds
via vacancy-mediated mechanism. Vacancy inevitably occurs in mate-
rials, when the temperature goes higher above the absolute zero. The
self diffusion of atoms would hence largely affect the physical, chemical
and mechanical properties of materials, such as, light-admitting quality,
ductility, creep, fracture, oxidation and corrosion, as well as electronic
and transport properties, and so on [3]. Mechanically, the vacancy-
mediated self diffusion can be mostly considered as a thermally acti-
vated process, in which a migrating atom passes through an energy
barrier and moves from a local energy minimum site to an adjacent
vacant site [4]. Conceptually, the self diffusivity in a given material is
determined by the basic processes of both the vacancy formation and
the vacancy migration. Accordingly, the self-diffusion activation energy

Hv
q is a sum of the vacancy formation energy Hv

f and the vacancy
migration energy Hv

m [5,6]. Despite of extensive experimental and
computational efforts that had been made to obtain the values of both
Hv

f and Hv
m [3,7–12], it is extremely challenging to fast and effectively

obtain these values. This challenge stems from the mutual interactions
between vacancy and other types of defects, while highly scattered and
limited data measured by experiments [7,11].

In comparison with the experiments, first-principles calculations
within the framework of Density-Functional Theory (DFT) have been
proved a good way in deriving the values of both Hv

f and Hv
m [3,10–12].

The key factor is to search for the transition state (TS) [13,14]. Once
one determines the initial and final positions of the vacancy in the
supercell method, the Nudged Elastic Band (NEB) [15,16] method is
commonly used to seek the minimum energy path between the initial
and final configurations for a specified atom jump. The NEB method is
successful in determining the vacancy migration energy Hv

m by using
spring-like force acting on the unstable atom while looking at inter-
mediate steps along the diffusion path, called images. Through this
common NEB method, accurate diffusion activation energies for self-
diffusion in fcc, bcc, and hcp metals are successfully calculated. For
instance, in an early study of Angsten et al. [11] both Hv

f and Hv
m of a

series of fcc and hcp elemental solids were reported. Most recently, both
Hv

f and Hv
m for 82 pure elemental solids in the periodic table in bcc, fcc

and hcp structures have been calculated by Shang et al. [3].
Although the great success for first-principles calculations has been

achieved, there are still two notable limitations for the calculations of
Hv

m. Firstly, the calculations of diffusion within a NEB framework of
DFT are highly complex and time consuming. Secondly, to our best
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knowledge, those previous calculations for diffusion activation energies
all refer to the ideal strain-free equilibrium states of materials.
Nevertheless, for most materials ranging from structural or functional
materials to devices, when they are under service it is inevitable for
them to have deformation occurred. Considering the importance of
understanding the effect of deformation on vacancy, a number of the-
oretical and experimental studies have been performed to investigate
vacancy behaviors under various deformations [17–25]. However, most
of those works focused on the behaviors of vacancies, including their
formation, annihilation and migration, as well as interactions with
other types of defects. To date no any investigation has been directly
related to the atomic diffusion migration energy barriers under de-
formations.

Within this context, through first-principles calculations, we have
developed a fast, effective and high-throughput modeling of calculating
the diffusion migration energy barrier in stable and metastable fcc
metals for both ideal strain-free lattices and uniaxially strained lattices
under deformations via three basic parameters of materials: the equi-
librium volume (V0), the bulk modulus (B0) and the Poisson's ratio (ν).
The validity of this modeling has been confirmed by comparing with
both available experimental data and DFT-NEB-derived data. In addi-
tion, we have elucidated the crucial diffusion process of fcc metals
under uniaxial tensile deformation, revealing that under uniaxial
strains the vacancy prefers to diffuse at the direction perpendicular to
the tensile deformation.

2. Methodology and computational details

Within the framework of Density Functional Theory (DFT) [26,27]
using Vienna Ab-initio Simulation Package (VASP) [28,29], we have
simulated the vacancy diffusion of a series of ground-state stable and
metastable fcc metals under uniaxial tensile deformation. We have
adopted the projector augmented wave (PAW) [30] method and gen-
eralized gradient approximation (GGA) within the Perdew-Burke-Ern-
zerh of (PBE) [31] exchange-correlation (X-C) function. A very accurate
optimization of structural parameters was achieved by minimizing
forces (below 0.0001 eV/Å) and the cut-off energies of plane wave were
assigned for each element at 1.5 times the maximum energy cutoff in
the PAW potential file (denoted ENMAX). A 15× 15×15 k-mesh grid
generated by the Monkhorst-Pack scheme was used to sample the
Brillouin zone. The spin-polarization calculations have been performed
for both ferromagnetic fcc Ni and metastable fcc Co metals. Never-
theless, only nonmagnetic state has been considered for fcc Fe because
fcc Fe is paramagnetic [32]. In order to simulate atomic diffusion under
the uniaxial deformation, we have built a 3× 3×3 supercell. In Fig. 1,
the force loading direction is illustrated along the b axis for the uniaxial
tensile deformation. Before the diffusion calculations, we optimized the
lattice structure under different degree of uniaxial strains, via such a
strategy that the b-axis direction of the stretched lattice was not allowed
to be relaxed, whereas the other two a- and c-axis directions are free to
be relaxed. In particular, it needs to be emphasized that during the
tensile deformation of our current computations, we assume that the
lattices will remain in an elastic deformation without the occurrence of
any plastic deformations. The optimized results commonly demon-
strated that along the b axis the supercell is stretched, whereas both that
a and c axes get slightly shorter in comparison with ideal strain-free
case (see details in Supplementary Material). At each uniaxial strain,
the vacancy formation energy of Hv

f was defined as the energy differ-
ence between the monovacancy-containing (HN 1) and ideal vacancy-
free (HN) supercells, as expressed in =H H Hv

f
N

N
N N1

1 (here, N is
the number of atoms in the supercell). To calculate the diffusion pro-
cess, we have considered all possible migration paths for vacancy-
mediated atom migrating to its first nearest neighboring (1nn) and the
second nearest neighboring (2nn) positions. The former is labeled as the
P1 path and the latter is labeled as the P2 path (see Fig. 1). It should be
noted that for ideal strain-free lattice, both P1 and P2 paths are just

identical as migration paths to its 1nn position. However, when fcc
metals are under uniaxial tensile deformation, P1 and P2 are no longer
the same. The distance of P2 is slightly longer than that of P1 because of
the deformation. The P1 path is strictly perpendicular to the direction of
the uniaxial tensile deformation, whereas the P2 path is along the
uniaxial tensile direction. Here, we have considered six different strains
of uniaxial tensile deformation from 0% to 5% with an interval step of
1%. Under each strain, we simulated these two different diffusion mi-
gration paths (P1 and P2) using the NEB method.

3. Results and discussions

Table 1 shows the calculated vacancy formation energies (Hv
f ) and

vacancy migration energy barriers (Hv
m) for 24 ground-state stable or

metastable fcc metals at their ideal strain-free equilibrium states along
with pervious DFT-derived data and available experimental values from
the Landolt-Börnstein New Series [7]. For both Hv

f and Hv
m of all se-

lected 24 fcc metals, our calculated values are in good agreement with
previous DFT-derived data [3,11] and available experimental data [7]
with an exception of fcc Th metal. From Table 1, it can be seen that the
largest deviations for both Hv

f and Hv
m occurs in Th, when compared

with its experimental data. First of all, it needs to be emphasized that
our current DFT-derived Hv

f value of 2.27 eV and the DFT-NEB-derived
Hv

m value of 1.05 eV are in the nice agreement with previously DFT-
derived Hv

f of 2.19 eV, 1.92 eV and 2.10 eV [3,11,33] and previous
DFT-NEB-derived Hv

m of 1.13 eV and 1.25 eV [3,11], respectively. In the
second, no matter what theoretical methods of the currently DFT cal-
culations in this work or in the previous theoretical works [3,11,33]
were used, the theoretical values for both Hv

f and Hv
m had over 50%

deviations, when compared with the early experimental data for fcc Th.
It is clear that the currently DFT-derived vacancy formation energy
(Hv

f =2.27 eV) is much higher by over 50% than the early experi-
mental data (1.08 eV–1.48 eV and 1.28 ± 0.23 eV [7,34]), whereas the
DFT-NEB-derived vacancy migration energy barrier (Hv

m =1.05 eV) is
much lower by over 50% than the early experimental estimation of
2.04 eV and 2.08 ± 0.23 eV [7,34]. More recently, through a norm-
conserving Troullier-Martins pseudo potential combined with the DFT-
NEB method, the vacancy migration energy barrier for fcc Th is cal-
culated as 0.75 eV [33], showing a much larger deviation from the early
experimental data [7,34]. The reasons for the deviations between the
DFT-derived data and experiments for fcc Th could be twofold. Firstly,
the deviations were thought to be ascribed to the employed X-C func-
tions on simulations [35–37]. For instance, Th metal has strongly cor-
related f electronic states which can not be treated correctly through
conventional DFT calculations. The computational methods beyond the
conventional DFT calculations are necessary for the Th metal. Secondly,
the experimental methodologies and the purity of samples may also be
the possible reason for these deviations [3]. The early experimental
sample of Th, which was used for the experimental measurement of the
diffusion activation energy (3.36 eV) in 1975 [38], was further used in
1984 to obtain the vacancy formation energy (1.28 ± 0.23 eV) by the
positron annihilation measurement [34]. However, this sample was
reported to contain less than 0.005 at.% of carbon, nitrogen, and
oxygen impurities [34,38], and these impurities definitely affected the
experimental accuracy.

Table 2 summarizes the Hv
f for 24 fcc metals under a uniaxial strain

from 0% to 5%. For Ag, Al, Au, Fe, Hf, Ir, Li, Mg, Na, Ni, Pb, Pd, Pt and
Ru, the Hv

f with a uniaxial strain is slightly increased, compared with
the ideal strain-free equilibrium states. This fact indicates that in those
fcc metals, it is a bit more difficult to have vacancy occurred when
uniaxial tensile deformation is applied. However, the situation is dif-
ferent for other fcc metals of Ca, Co, Cu, Ho, Re, Sc, Tb, Th, Ti and Zr.
The lowest Hv

f is no longer at 0%. For Ca, Co, Ho, Re, Tb, Th, Ti and Zr
the lowest Hv

f is at 5%, for Cu at 4% and for Sc at 3%.
Table 3 summarizes the Hv

m values for migration energy barriers
along both P1 and P2 paths of 24 fcc metals with a uniaxial strain from
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0% to 5%. The Hv
m values are plotted as a function of uniaxial strains in

Fig. 2. The filled squares represent the Hv
m for vacancy migrating in the

P1 path and the open circs correspond to the Hv
m for vacancy migrating

in the P2 path. In all 24 fcc metals, the Hv
m values along the P1 path are

obviously lower than those for P2 as the uniaxial strain increases. This
indicates that the vacancy indeed prefers to migrate perpendicularly to
the direction of tensile deformation in those metals, for the P1 path is
the energetically favorable one during the migration process for all
these 24 metals. To explain the phenomenon that vacancy prefers to
migrate in the direction perpendicular to the tensile deformation, we
calculated the differential charges density for self-migrating Al atom
migrates in TS position. As shown in Fig. 3, the yellow parts represent

charge gain and the blue parts represent charge loss. When the strain
increased, the blue parts of P1 path are becoming thinner, which results
the weaker interatomic interaction between the migrating atom and its
surrounding atoms. But for the P2 path, the situation is just opposite,
the blue parts are gradually thicker, which means stronger interaction
for the migrating atom. It is intuitively to expect that stronger inter-
action would cause higher vacancy migration energy for atom to mi-
grate. Therefore, this explains the reason for the vacancy migration
energy in P1 is constantly lower than P2.

Besides, we have noted that for all these fcc metals, the Hv
m for the

vacancy migration along the P1 path commonly exhibits a nearly linear
decreasing trend against the applied strain in Fig. 2. If the linear fitting
is applied along the P1 path of each metal, the goodness of the fitting is
larger than 0.95 (R2 > 0.95) for all 24 fcc metals. Therefore, the strain-

Fig. 1. Schematic diagram of (a) fcc metals under uniaxial tensile deformation, and (b) vacancy-mediated self-diffusion atom migrating from IS to TS.

Table 1
DFT-derived vacancy formation energy (Hv

f in eV) and vacancy migration en-
ergy (Hv

m in eV) for 24 selected fcc metals.

Metals Hv
f Hv

m

This
work

Previous DFT Expt. This
work

Previous DFT Expt.

Ag 0.83 0.79, 0.68 1.06–1.18 0.63 0.59, 0.70 0.55–0.86
Al 0.62 0.63, 0.61 0.60–0.80 0.62 0.57, 0.58 0.55–0.70
Au 0.52 0.39, 0.40 0.89–1.02 0.62 0.67, 0.53 0.62–0.94
Ca 1.16 1.16, 1.13 – 0.39 0.44, 0.47 –
Co 1.79 1.83, 1.79 – 1.11 1.05, 1.01 –
Cu 1.09 1.06, 1.07 0.92–1.31 0.74 0.67, 0.72 0.67–0.76
Fe 2.36 1.86, 2.32 – 1.43 —, 1.38 –
Hf 2.04 2.14, 2.09 – 0.87 0.68, 0.81 –
Ho 1.71 1.70, 1.74 – 0.91 0.68, 0.73 –
Ir 1.60 1.63, 1.55 – 2.49 2.75, 2.54 –
Li 0.61 0.61, 0.60 – 0.16 0.07, 0.16 –
Mg 0.87 0.83, 0.82 – 0.33 0.36, 0.41 –
Na 0.37 0.40, 0.38 – 0.15 0.06, 0.14 –
Ni 1.42 1.46, 1.43 1.45–1.80 1.20 1.12, 1.08 0.90–1.30
Pb 0.50 0.45, 0.45 0.49–0.62 0.62 0.50, 0.54 0.54
Pd 1.13 1.17, 1.16 1.7, 1.85 1.00 1.03, 0.95 1.03
Pt 0.64 0.63, 0.61 1.15–1.52 1.36 1.37, 1.24 1.13–1.48
Re 2.98 3.08, 2.94 – 2.42 1.83, 1.81 –
Ru 2.58 2.63, 2.51 – 2.22 2.08, 1.85 –
Sc 1.77 1.76, 2.07 – 0.72 0.56, 0.60 –
Tb 1.76 1.72, 1.75 – 0.85 0.63, 0.71 –
Th 2.27 2.19, 1.92 1.08–1.48 1.05 1.13, 1.25 2.04
Ti 1.87 1.95, 1.95 – 0.44 0.32, 0.45 –
Zr 2.01 2.08, 2.02 – 0.61 0.32, 0.50 –

Table 2
DFT-derived vacancy formation energy (Hv

f in eV) versus uniaxial strain for 24
selected fcc metals.

Strain 0% 1% 2% 3% 4% 5%

Ag 0.83 0.91 0.86 0.88 0.84 0.86
Al 0.62 0.64 0.71 0.77 0.75 0.75
Au 0.52 0.55 0.61 0.54 0.55 0.55
Ca 1.16 1.16 1.16 1.16 1.15 1.14
Co 1.79 1.80 1.80 1.79 1.78 1.76
Cu 1.09 1.14 1.08 1.09 1.08 1.12
Fe 2.36 2.37 2.39 2.39 2.39 2.38
Hf 2.04 2.04 2.07 2.08 2.08 2.06
Ho 1.71 1.72 1.72 1.72 1.71 1.70
Ir 1.60 1.65 1.68 1.69 1.70 1.69
Li 0.61 0.62 0.62 0.62 0.62 0.61
Mg 0.87 0.87 0.87 0.88 0.89 0.87
Na 0.37 0.38 0.38 0.38 0.39 0.40
Ni 1.42 1.43 1.44 1.45 1.46 1.46
Pb 0.50 0.52 0.53 0.556 0.58 0.59
Pd 1.13 1.22 1.22 1.23 1.22 1.23
Pt 0.64 0.67 0.69 0.69 0.71 0.72
Re 2.98 3.02 3.05 3.03 2.97 2.95
Ru 2.58 2.60 2.62 2.63 2.63 2.62
Sc 1.77 1.79 1.78 1.72 1.76 1.73
Tb 1.76 1.72 1.73 1.73 1.72 1.71
Th 2.27 2.28 2.28 2.27 2.25 2.23
Ti 1.87 1.87 1.86 1.85 1.85 1.84
Zr 2.01 2.01 2.01 2.00 2.00 1.98

Y. Feng, et al. Progress in Natural Science: Materials International 29 (2019) 341–348

343



dependent H ( )v
m along the energy-lowest P1 path can be consistently

expressed in a simple linear equation as follows,

=H H k( )v
m

v
m
0 (1)

where Hv
m
0 denotes the vacancy migration energy barrier at the ideal

strain-free metals. The parameter k is the fitting slope, implying the
decreasing tendency of migration energy barrier with the increasing
applied strain .

First of all, concerning the Hv
m
0 at the ideal strain-free state, different

metals have highly varied values (Fig. 2). As early as in 1968, Flynn

Table 3
DFT-NEB-derived vacancy migration energy (Hv

m in eV) for 24 selected fcc metals.

Strain 0% 1% 2% 3% 4% 5%

Path P1(P2) P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

Ag 0.63 0.62 0.66 0.56 0.68 0.54 0.70 0.48 0.70 0.43 0.71
Al 0.62 0.61 0.66 0.58 0.68 0.53 0.69 0.50 0.70 0.45 0.71
Au 0.62 0.58 0.65 0.54 0.68 0.49 0.70 0.43 0.70 0.39 0.71
Ca 0.39 0.37 0.42 0.33 0.42 0.30 0.43 0.26 0.45 0.23 0.41
Co 1.11 1.05 1.16 0.97 1.17 0.89 1.16 0.81 1.14 0.74 1.14
Cu 0.74 0.72 0.80 0.68 0.82 0.64 0.85 0.58 0.85 0.52 0.84
Fe 1.43 1.37 1.47 1.30 1.49 1.24 1.49 1.17 1.49 1.10 1.48
Hf 0.84 0.83 0.91 0.79 0.94 0.75 0.96 0.72 0.97 0.66 0.95
Ho 0.91 0.86 0.93 0.82 0.95 0.77 0.95 0.73 0.95 0.68 0.93
Ir 2.49 2.34 2.59 2.17 2.62 2.00 2.63 1.81 2.60 1.63 2.54
Li 0.16 0.15 0.17 0.14 0.17 0.12 0.18 0.11 0.17 0.10 0.18
Mg 0.33 0.30 0.35 0.26 0.37 0.22 0.38 0.19 0.38 0.14 0.38
Na 0.15 0.14 0.16 0.12 0.15 0.10 0.16 0.08 0.14 0.07 0.14
Ni 1.20 1.14 1.26 1.06 1.28 0.98 1.29 0.90 1.29 0.82 1.28
Pb 0.62 0.59 0.64 0.58 0.67 0.54 0.66 0.50 0.66 0.45 0.63
Pd 1.00 0.88 1.00 0.81 1.00 0.73 1.01 0.65 1.01 0.58 1.03
Pt 1.36 1.28 1.41 1.15 1.42 1.03 1.41 0.91 1.37 0.78 1.32
Re 2.42 2.33 2.51 2.24 2.57 2.12 2.59 1.96 .53 1.80 2.40
Ru 2.22 2.09 2.26 1.96 2.27 1.84 2.25 1.73 2.23 1.61 2.18
Sc 0.72 0.69 0.74 0.65 0.77 0.60 0.78 0.55 0.77 0.51 0.77
Tb 0.85 0.82 0.88 0.78 0.90 0.74 0.91 0.70 0.90 0.66 0.91
Th 1.05 0.98 1.09 0.90 1.11 0.82 1.10 0.74 1.09 0.66 1.07
Ti 0.44 0.43 0.45 0.42 0.46 0.40 0.45 0.38 0.42 0.36 0.42
Zr 0.61 0.60 0.62 0.58 0.61 0.55 0.62 0.52 0.60 0.48 0.58

Fig. 2. The curves of Hv
m- uniaxial stain for 24 fcc metals.
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proposed an estimation formula =H cVv
m
0 0

2 to correlate the vacancy
migration energy barrier (Hv

m
0) to both the average elastic constant (c)

and atomic volume (V0) for fcc metals [39]. The limitation of this ex-
pression is the factor of 2, which has to be fitted by a product of cV0 to

the known experimental Hv
m
0 values. Using this expression, the Hv

m
0 va-

lues for only six simple fcc metals were calculated [39]. Up to 2014,
Angsten et al. [11] optimized this expression by replacing the average
elastic constant with the bulk modulus and further calculated the Hv

m
0 of

49 fcc stable or metastable elemental solids. However, the limitations of
these two formulas are sill notable, mainly due to two-fold reason: (i)
both formulas are only applied to the fcc case at the ideal strain-free
condition and (ii) the low accuracy of the estimated results has re-
stricted their further applications. For instance, compared with NEB-
derived Hv

m
0 of 49 fcc candidates, the maximum derivation for the for-

mula-generated Hv
m
0 can be as large as 0.56 eV with a rms error of

0.24 eV [11]. Inspired by their spirits [11,39], we have found that the
values of Hv

m
0 for fcc candidates at the ideal strain-free condition would

have much better expression by linearly correlating with a product,
V B /0 0 , via three basic parameters of materials, the equilibrium volume
(V0), bulk modulus (B0) and Poisson's ratio in Fig. 4. The details are
given in Table 4. Both B0 and have been calculated by using “stress-
strain” approach [40,41] combined with Voigt-Reuss-Hill approxima-
tion [42,43]. The experimental data of B0 and are obtained from the
Smithells Metals Reference Book [8]. According these data, we have
yielded a nice linear fitting between Hv

m
0 and V B /0 0 with a fitting

goodness of R2 =0.96 for 24 fcc metals, suggesting that Hv
m
0 can be

expressed as follow,

= × +H V B0.12 0.10v
m
0

0 0
(2)

where the units ofV0 and B0 are nm3 per atom and GPa,respectively, and
the unit of Hv

m
0 in this equation has been converted into eV.

Secondly, concerning the slope k in Eq. (1), it mainly describes the
strain-dependent migration energy barriers along the lowest-energy P1
path for selected 24 fcc metals in Fig. 2. Interestingly, we have also
found that the slope k in the Eq. (1) exhibits a nearly linear relationship

Fig. 3. Isosurfaces of differential charge density contours (0.015 e/Bohr3) for migrating Al-atom at TS position. (Yellow: charge gain and blue: charge loss).

Fig. 4. (a) DFT-NEB-derived Hv
m
0 for 24 ideal strain-free fcc metals versus V B /0 0 , (b) slope k versus V B /0 0 .

Table 4
Calculated bulk modulus (B0 in GPa), Poisson's ratio ( ) and equilibrium atomic
volume (V0 in atomÅ3 1) for 24 selected fcc metals.

Metals B0 ν V0

This work Expt. This work Expt. This work Expt.

Ag 94.26 103.6 0.35 0.367 17.86 17.23 [44]
Al 77.65 75.2 0.30 0.345 16.47 16.60 [45]
Au 143.82 171 0.45 0.42 18.08 16.95 [46]
Ca 17.47 17.2 0.30 0.31 42.23 43.55 [47]
Co 208.46 181.5 0.29 0.32 10.93 11.33 [48]
Cu 141.30 137.8 0.35 0.343 11.96 11.81 [46]
Fe 285.00 – 0.25 0.26 10.25 13.30 [49]
Hf 106.42 109 0.32 0.26 22.49 –
Ho 42.36 – 0.24 – 3.093 34.15 [50]
Ir 346.21 371 0.29 0.26 14.58 14.15 [46]
Li 13.75 – 0.32 0.36 20.21 20.25 [51]
Mg 35.59 35.6 0.34 0.291 23.01 –
Na 7.66 – 0.34 0.34 37.36 –
Ni 196.38 177.3 0.29 0.312 10.95 11.00 [52]
Pb 43.88 45.8 0.35 0.44 31.55 30.15 [53]
Pd 169.74 187 0.38 0.39 15.42 14.72 [54]
Pt 253.79 276 0.40 0.39 15.65 15.08 [55]
Re 376.25 34 0.29 0.26 14.95 –
Ru 306.80 286 0.24 0.25 14.00 –
Sc 51.89 – 0.30 – 24.72 –
Tb 41.31 – 0.24 – 31.93 35.15 [50]
Th 55.00 54.0 0.21 0.26 32.08 32.91 [56]
Ti 103.51 108.4 0.36 0.361 17.39 –
Zr 93.05 89.8 0.35 0.38 23.35 23.25 [57]
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with the same product of V B /0 0 for all fcc metals selected here, as il-
lustrated in Fig. 4. If the k versus V B /0 0 data in Fig. 4b are linearly
fitted, the slope k can be expressed as follows,

= × +k V B0.674 1.030 0
(3)

where we have yielded a fitting goodness of R2 =0.91. By combining
both Eqs. (2) and (3) into Eq. (1), the strain-dependent Hv

m can be
written as follows,

= × + × +H V B V B( ) 0.12 0.10 0.674 1.03v
m 0 0 0 0

(4)

where the parameter is the applied uniaxial strain. Note that here the
unit of H ( )v

m has been converted into eV. According to Eq. (4), the
strain-dependent migration energy barrier of vacancy in fcc metals can
be directly derived according to the intrinsic bulk modulus B0 and the
Poisson's ratio , as well as its equilibrium volumeV0 at the ideal strain-
free lattice.

Physically, it is highly curious as to why Eqs. (2) and (4) can rea-
sonably predict the diffusion migration energy barriers for atom just
according to macroscopic and traditional mechanical properties of
materials (B0, andV0). To elucidate this mechanism, we have analyzed
the results obtained by NEB calculations for each strain to find the
saddle point (TS) along the lowest-energy migration P1 path. Interest-
ingly, the structure for atom diffusion at the TS along the P1 path is
consistent for each strain applied here. As illustrated in Fig. 1, the
shadowed rectangle represents the migration window. The blue ball
denotes the self-diffusion atom. When the atom migrates to the saddle
point position, the diffusive atom always diffuses at the halfway of
migration path and locates at the center of a rectangle shaped by its
four surrounding atoms. This rectangle is the shaped area in Fig. 1b.
Here, we defined this shaped rectangle as the migration window.
Therefore, the value of Hv

m for P1 is greatly correlated to the energy
costing for atom migrating through this migration window. In other
words, Hv

m reflects how difficult for the atom to migrate through this
migration window. It has been noted that the bulk modulus B0 can be
indeed viewed as the energy density per a unit volume to reflect the
average interatomic interaction bonding strength under isotropic de-
formation. Accordingly, the product B0, between the bulk modulus and
the equilibrium volume, refers to the energy to resist such a deforma-
tion. The larger the B0 term is, the more difficult for the self-diffusion
atom to pass through the migration window due to the stronger in-
teratomic bonding interaction. In addition, when atom diffuses through
the TS point, the migration window will experience an expansion,
which causes the local deformation. We found that this behavior is
related with the Poisson's ratio ( ). To elucidate it, here we first defined

Table 5
Modeled Hv

m
0 generated by Eq. (2) for Group I (24 fcc metals, Ag – Zr) and Group

II (23 fcc-structure elements, Ac –Y) compared with DFT-NEB-derived data.

B0 ν V0 Modeled Hv
m
0 NEB data E Expt.

Group I
Ag 94.26 0.35 17.86 0.65 0.63 0.02 0.55–0.86
Al 77.65 0.30 16.47 0.60 0.62 0.02 0.55–0.70
Au 143.83 0.45 18.08 0.76 0.62 0.14 0.62–0.94
Ca 17.47 0.30 42.23 0.39 0.39 0.00 –
Co 208.46 0.29 10.93 1.01 1.11 0.10 –
Cu 141.30 0.35 11.96 0.66 0.74 0.08 0.67–0.76
Fe 285.00 0.25 10.25 1.46 1.43 0.03 –
Hf 106.42 0.32 22.49 0.98 0.87 0.11 –
Ho 42.36 0.24 30.93 0.74 0.91 0.17 –
Ir 346.21 0.29 14.58 2.57 2.49 0.08 –
Li 13.75 0.32 20.21 0.20 0.16 0.04 –
Mg 35.59 0.34 23.01 0.38 0.33 0.05 –
Na 7.66 0.34 37.36 0.20 0.15 0.05 –
Ni 196.38 0.29 10.95 0.96 1.20 0.24 0.9–1.3
Pb 43.88 0.35 31.55 0.56 0.62 0.06 0.54
Pd 169.74 0.38 15.42 0.89 1.00 0.11 1.03
Pt 253.79 0.40 15.65 1.25 1.36 0.11 1.13–1.48
Re 376.25 0.29 14.98 2.39 2.42 0.03 –
Ru 306.80 0.24 14.00 2.15 2.22 0.07 –
Sc 51.89 0.30 24.72 0.59 0.72 0.13 –
Tb 41.31 0.24 31.93 0.73 0.85 0.12 –
Th 55.00 0.21 32.08 1.09 1.05 0.04 2.04
Ti 103.51 0.36 17.39 0.67 0.44 0.23 –
Zr 93.05 0.35 23.35 0.82 0.61 0.21 –
Group II
Ac 23.48 0.27 45.37 0.54 0.45 0.09 –
Ar 1.60 0.74 45.00 0.11 0.06 0.05 –
Ba 8.01 0.28 64.13 0.32 0.36 0.04 –
Be 16.96 0.15 7.88 0.8584 0.75 0.09 –
Cd 41.66 0.42 22.60 0.37 0.23 0.14 –
Ce 37.65 0.25 26.10 0.58 0.54 0.04 0.87
Cs 2.40 0.30 116.46 0.21 0.13 0.08 –
Er 16.02 0.24 40.96 0.43 0.47 0.04 –
Ga 29.64 0.47 18.91 0.24 0.18 0.06 –
He 1.60 0.40 16.54 0.11 0.02 0.09 –
In 33.65 0.45 27.33 0.35 0.23 0.12 –
K 3.20 0.35 73.60 0.18 0.016 0.02 –
Kr 0.80 0.54 57.44 0.11 0.07 0.04 –
La 24.83 0.34 37.10 0.43 0.21 0.22 –
Mn 276.38 0.24 10.73 0.46 0.65 0.19 –
Os 398.14 0.25 14.29 2.83 2.73 0.10 –
Rb 2.40 0.30 90.81 0.19 0.14 0.05 –
Rh 250.74 0.26 14.13 1.74 1.79 0.05 1.5
Sn 46.46 0.36 27.82 0.53 0.38 0.15 –
Sr 11.22 0.28 54.74 0.36 0.45 0.09 –
Tl 27.24 0.45 30.50 0.32 0.10 0.22 –
Xe 0.80 0.47 80.21 0.12 0.09 0.03 –
Y 38.45 0.27 32.35 0.6 0.67 0.01 –

Fig. 5. (a) Modeled Hv
m
0 this work in filled squares and previous in open circles. (b) Hv

m versus DFT-NEB-derived data for all 24 fcc metals with the uniaxial strain.
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a ratio as follow,

= r
L

atom

diagonal (5)

where Ldiagonal is the diagonal length of the migration window and ratom
is the metallic radius of migrating atom. This ratio ( ) can be con-
sidered as the measure of the relative size of the migrating atom and the
migration window. When the area of the migration window is much
larger than that of migration atom, the atom will easily diffuse through
this window. Within this situation, the atomic interaction bonding
imposed by migration window is relatively weaker on the migrating
atom. Therefore, it can be easily understood that the higher ratio is,
the more difficult for atom to pass through the migration window.
When the self-diffusion atom locates at the initial position (IS), for
different fcc metals under the same degree of uniaxial strain, the value
of is extremely close to each other (see details in (Supplementary
Material). For instance, the of these ideal strain-free fcc metals is 1/ 6
for all 24 fcc metals. Once atom diffuses through this migration window
along the P1 path, its surrounding atom will experience the expansion
reinforced by the diffusive atom, as illustrated in the right panel of
Fig. 1. The atomic diffusion along the P1 path from the IS to the TS
could be in analogy with the situation of the applied compression along
the P1 path. Within such a process, the migration window tends to
expand in the direction that perpendicular to the atom diffusion di-
rection (see Fig. 1b, right panel). The local x is the axial compression
and both the local y and z are transversally expanded. Therefore, the
physical meaning of the Poisson's ratio in Eqs. (2) and (4) can be
understood as a specific value of the transversal expansion over the
axial compression. As the axial compression of x for atom locally mi-
grating from the IS to the TS in P1 is always a2 /4 even for fcc metals
under uniaxial strain (a is the lattice constant of fcc metals that per-
pendicular to the uniaxial deformation). Hence, it is reasonable to ex-
pect that the higher value of reflects the larger expansion of the mi-
gration window, which results in the lower ratio . Based on the fact
that the easier for the migrating atom to pass through the migration
window, the lower Hv

m would be, it is safe to say that the value of Hv
m is

proportional to the 1/ . As a result, the synthetic effects of V B0 0 and 1/
would be a good reason as to why the Hv

m can be expressed as a function
of the product of V B /0 0 , as evidenced in Eqs. (2) and (4).

In order to verify the derived Eq. (4), we doubly checked 47 ground-
state stable or metastable fcc elemental solids in two groups. As shown
in Table 5, in Group I (Ag–Zr), we have predicted the Hv

m
0 at the ideal

strain-free lattice ( = 0) for 24 fcc metals via our DFT-derived basic
parameters of B0, V0 and . The modeled results are in good agreement
with our currently DFT-NEB-derived data with the maximum deviation
of 0.24 eV for fcc Ni and 0.23 eV for metastable fcc Ti. In Group II(Ac–
Y), we have predicted the strain-free Hv

m
0 (with = 0) for the other 23

fcc elemental solids through the derived Eq. (4) with the already pub-
lished data of B0, V0 and in literatures [8,11]. In comparison with the
previous DFT-NEB-derived data [11], the currently predicted values
exhibit a highly good agreement, along with the maximum deviation of
0.22 eV for both metastable fcc La and Tl. Fig. 5a compiles the com-
parison between our currently modeled results and DFT-NEB-derived
data for strain-free Hv

m
0 of 47 fcc elemental data. It can be seen that our

current predictions for these 47 candidates indicates a much higher
accuracy, as compared with the previous work [11]. It needs to be
emphasized that for Th metal, our current modeling yields a Hv

m
0 value

of 1.09 eV, in a good agreement with our current DFT-NEB-derived
value of 1.05 eV and also with the previously published DFT- NEB-de-
rived data (1.13 eV and 1.2 5eV) [3,11]. However, in comparison with
the experimental estimation of 2.04 eV [7] for fcc Th, the current pre-
diction shows an obvious deviation. As already discussed above, the
possible reason for this exception of fcc Th may because by conven-
tional computational DFT methods or by previous estimations of ex-
periments, themselves. Furthermore, for Group I, we have predicted
their strain-dependent H ( )v

m ( = 0–0.05) for all 24 fcc ground-state

stable or metastable metals.The resultant findings from Eq. (4) are
plotted against the DFT-NEB-derived data in Fig. 5b. The solid red line
in Fig. 5 represents the derived data exactly equals to DFT-NEB-derived
data, whereas the dash lines define the range with the error deviation
bar ± 0.25 eV. The data reproduced by Eq. (4) shows a highly nice
agreement with the NEB-derived data. The Eq. (4)-generated values of
over 60% fcc metals has the deviation within ± 0.1 eV from the DFT-
NEB-derived data and for all 24 metals, the Eq. (4)-generated values fall
into the deviation range within ± 0.25 eV.

4. Conclusions

Using first-principles calculations, we have investigated the diffu-
sion behavior for vacancy in fcc metals under different degree of uni-
axial tensile deformation. The obtained findings are two-fold.

The first finding is to develop a high-throughput, fast and effective
model to derive the vacancy migration energy barrier via three fun-
damental material parameters of the equilibrium volume (V0), the bulk
modulus (B0) and the Poisson's ratio ( ) for fcc elemental solids. This
model is useful to the fcc lattice not only at the strain-free equilibrium
state, but also at the uniaxial tensile strain. This model has provided
enormous time efficiencies in computation, as compared with conven-
tional DFT-NEB method. The accuracy of the model has been confirmed
reasonable and acceptable verified by available experimental, pub-
lished theoretical data, or new DFT-NEB-derived data.

The second finding is to investigate the effect of uniaxial tensile
deformation on the diffusion behavior of vacancy in fcc metals.
Through first-principles calculations, we have calculated the vacancy
migration energy barriers for 24 fcc metals that under different degree
of uniaxial tensile deformation (from 0% to 5%). The results demon-
strate that in all 24 fcc metals, the energy barriers of vacancy migrate
perpendicularly to the tensile deformation are obviously lower than
those along the tensile direction as the uniaxial strain increases. These
calculations reveal that the vacancy prefers to migrate to the direction
that is perpendicular to the tensile deformation.
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