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ABSTRACT Laminated metals have the potential for achieving better mechanical properties, such as
higher strength, ductility, and work hardening ability. The mechanism that leads to these advances stems
from the inhomogeneous plastic deformations between soft and hard components where geometrically
necessary dislocations (GNDs) are produced while the two adjacent components are mutually con-
strained. Many structural factors have already been extensively investigated during the optimization of
the laminated structure, such as the effect of layer thickness and the strength differential between compo-
nents on the overall resulting properties. However, the effect of component composition percentage, an
important factor for laminated structures, on the mechanical properties and its underlying mechanism re-
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mains elusive. To unravel the effect of component composition percentage on the mechanical properties,
we used stable nanotwinned structures as components to build laminated nanotwinned (LNT) Cu materi-
als. Three LNT Cu samples with hard components on the surface layers and soft components in the core
layer were designed and prepared by direct-current electrodeposition. The soft component percentages
were set as 10%, 50%, and 90%. The mechanical behaviors of LNT Cu were explored by uniaxial tensile
tests at room temperature. Yield strengths for all three LNT Cu were higher than that estimated by the
rule of mixture, indicating an extra strengthening effect from the LNT structure. The LNT Cu containing
50% soft component (LNT-50%) demonstrated the greatest extra strengthening. Interestingly, full-field
strain measurements and microstructure characterizations further indicated that the strain localization of
LNT-50% was well suppressed and the lateral strain difference between the soft and hard components
was obviously reduced. This indicated that the strong mutual constraint between the two components
contributed to the greatest extra strengthening.

KEY WORDS laminated nanotwinned Cu, component percentage, extra strengthening, strain localiza-

tion, gradient plastic deformation
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Fig.1 SEM and TEM images of HNT-@ (al, a2) and HNT-D (b1, b2), the distributions of grain size (d) (c) and twin
thickness (1) (d) of HNT-A) and HNT-); and schematics (el-gl), SEM images (e2-g2), and hardness distributions
(e3-g3) of LNT-10% (el-e3), LNT-50% (f1-f3), and LNT-90% (g1-g3) (GD—growth direction, HNT—homogeneous

nanotwinned, LNT—laminated nanotwinned)
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(The endings of elastic—plastic transition are indicated by the intersections of work hardening curves with the dash line
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Note: o,—yield strength,g,,—ultimate tensile strength, §,—uniform elongation, o™ —yield strength estimated by rule of

y

mixture, Ac—the increased value between o, and o{*", Ao / o} —extra strengthening
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Fig.3 Illustration of tensile specimen and spackle pattern on gauge area (a), strain distributions along x axial (g,) on the

surfaces of LNT-10% (b1-b3),LNT-50% (cl1-c3), and LNT-90% (d1-d3) at different applied tensile strains (g,,), &,

distribution profiles of three LNT Cu samples at ¢,, = 5% (e) (measured along the white transverse lines in Figs.3b3~

d3), and Ag, of three LNT Cu samples at different ¢, (f) (A, is the increased value between the maximal ¢, and ¢

anp> 85
illustrated in Fig.3e)
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Fig.4 Illustration of tensile specimen and the observed area (a), CLSM images (b1-d1, b2-d2) and corresponding average
height profile (b3-d3) and average relative lateral strain (Ag,) (b4-d4) of LNT-10% (b1-b4), LNT-50% (c1-c4), and
LNT-90% (d1-d4) deformed at ¢,, = 0 and 6%, respectively (The area closed by white dashed lines in Fig.4b2

indicates the strain localization zone. \Asf@ -0

lateral strain gradient)

is maximal lateral strain difference between component @ and (D), 1, is
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