采用BNi-7的Ti(C,N)基金属陶瓷与17-4PH沉淀硬 化不锈钢的真空钎焊研究

王风振 王全兆 于宝海 肖伯律 马宗义

(中国科学院金属研究所 沈阳材料科学国家 (联合) 实验室 沈阳 110016)

摘要 采用镍基共晶钎料 BNi-7 对 Ti(C,N) 基金属陶瓷与 17-4PH 沉淀硬化不锈钢行了真空钎焊连接,研究了钎焊温度和 焊缝厚度对焊接接头力学性能和微观结构的影响.结果表明, BNi-7 对金属陶瓷粘结相具有较强的溶解能力,这是熔降元素 (磷) 能够在金属陶瓷侧大范围分布、钎焊接头获得良好界面结合的主要原因.随钎焊温度升高,磷在金属陶瓷侧的分布区域逐渐扩大, 在 1100 C保温 60 min、焊缝厚度为 50 μm 的工艺下获得了最高的接头抗剪强度 454 MPa.
 关键词 材料合成与加工工艺、真空钎焊,镍基钎料,Ti(C,N) 基金属陶瓷,抗剪强度,界面结构
 分类号 TG425

Brazing of Ti(C,N) Cermet and 17–4PH Precipitation–hardened Stainless Steel by Nickel–based Filler Metal BNi–7

WANG Fengzhen WANG Quanzhao YU Baohai XIAO Bolv MA Zongyi*

(Shenyang National Laboratory for Materials Science, Institute of Metal Research,

Chinese Academy of Sciences, Shenyang 110016) Manuscript received April 11, 2011; in revised form July 27, 2011.

* To whom correspondence should be addressed, Tel:(024)83978908. E mail:zyma@imr.ac.cn

ABSTRACT The Ti(C,N) cermet and 17–4PH precipitation-hardened stainless steel were brazed in vacuum using nickel-based eutectic filler BNi–7. The effects of brazing temperature and brazing seam thickness on the microstructure and shear strength of the brazed joints were investigated. BNi–7 filler had a strong dissolution ability to the binder of the Ti(C,N) cermet. This is beneficial to the wide distribution of melting point depressant (phosphorous) in the Ti(C,N) cermet side and producing a good interfacial bonding. The distribution zone of phosphorous in the Ti(C,N) cermet side that is adjacent to the brazing seam increased as the brazing temperature rose. A maximum shear strength of 454 MPa was achieved at a brazing temperature of 1100 °C and a brazing time of 60 min with a brazing seam thickness of 50μ m.

KEY WORDS synthesizing and processing technics, vacuum brazing, nickel base filler, Ti(C,N) cermet, shear strength, interface microstructure

Ti(C,N) 基金属陶瓷具有硬度高、密度低、化学 稳定性和抗氧化性好、对钢的摩擦系数小、能切削 难熔金属等优良的综合性能,特别是高温下仍具有与 WC Co 硬质合金相媲美的红硬性和热稳定性^[1-6]。 近年来,Ti(C,N) 基金属陶瓷在切削刀具、拉丝模具 等工业领域获得了日趋广泛的应用。但由于Ti(C,N) 基金属陶瓷存在机械加工难度大,强韧性不足,大尺 寸材料制备困难且成本高等缺点,在较大程度上限制 了其应用范围。Ti(C.N) 基金属陶瓷与钢等金属材料 的可靠连接是其获得广泛工程应用的关键。

在异种材料诸多连接技术中,研究最多、应用最 广的焊接方法为钎焊和扩散焊。扩散焊的主要不足 是扩散温度高、时间长且设备昂贵、成本高;而钎焊 的主要问题是接头强度过低。文献 [7] 对金属陶瓷与 钢进行火焰钎焊,采用 BAg10CuZn 钎料时接头平均 抗剪强度为 114 MPa,采用 BCu58ZnMn 时接头平均 抗剪强度为 49 MPa。文献^[8] 对金属陶瓷与钢进行 气体保护钎焊,采用 Ag72Cu28 钎料时接头平均抗剪 强度为 51 MPa。文献^[4] 对金属陶瓷与钢进行真空 钎焊,采用 CuMnNi 和 CuMnCo 钎料时接头平均抗 剪强度达到了 338 MPa 和 274 MPa,但接头强度仍

²⁰¹¹ 年 4 月 11 日收到初稿; 2011 年 7 月 27 日收到修改稿。 本文联系人: 马宗义, 研究员

然较低。

574

由于 Ti(C,N) 基金属陶瓷为镍基复合材料. 镍基 钎料对母材的润湿、铺展和流动过程及其与母材之 间溶解等相互作用过程有着其它钎料无法比拟的优 势。17-4PH 沉淀硬化钢 (0Cr17Ni4Cu4Nb) 通过马氏 体相变和沉淀强化,可获得高强度和高韧性等良好综 合性能,被广泛用于海洋平台、航空航天及核工业等 领域中。由于 17-4PH 时效强化温度低且热处理工艺 简单,可有效避免焊后热处理造成的应力开裂及残余 应力过大等问题。

BNi 7 钎料属于共晶成分, 熔点低, 流动性好。由于 BNi-7 含铬, 钎焊接头具有良好的抗热性和耐蚀性。因此, 本文采用镍基钎料 BNi-7 对 Ti(C,N) 基金属陶瓷与 17 4PH 沉淀硬化不锈钢进行真空钎焊连接, 深入研究了钎焊工艺对接头微观结构及力学性能的影响。

1 实验方法

实验材料分别为 Ti(C,N) 基金属陶瓷和 17-4PH 沉淀硬化不锈钢, 钎料采用镍基钎料 BNi-7, 化学成 分如表 1 示。Ti(C,N) 基金属陶瓷微观结构如图 1 所 示, 其硬度为 62HRC, 抗弯强度为 1450~1550 MPa。 用电火花线切割分别将 Ti(C,N) 基金属陶瓷和 17-4PH 沉淀硬化不锈钢制成尺寸为 25 mm×20 mm× 4 mm 和 30 mm×25 mm×10 mm 的试片。将试片待焊 表面用砂纸打磨后, 在乙醇中超声波清洗 10 min 后 吹干备用。钎焊时,由上而下按照配重块 \rightarrow Ti(C,N) 基金属陶瓷 \rightarrow BNi-7 钎料 \rightarrow 17-4PH 沉淀硬化不锈 钢的顺序装配好 (如图 2a 所示),放入真空加热炉中 钎焊。添加适当重量的配重块有利于钎料与母材的 充分接触及调整钎缝厚度的大小。钎焊过程中升温 速度为 10 ℃/min,升温过程中在 300 ℃、560 ℃下分 别保温 30 min 以排除钎料粘结剂,钎焊温度分别为 1000 ℃、1050 ℃和 1100 ℃,保温时间 60 min。钎焊 完成后充气快冷至室温。

采用扫描电镜 (SEM)、能谱分析 (EDS) 等手段 对钎焊接头微观组织进行观察和分析。利用电子万 能试验机进行焊接接头抗剪强度测定,剪切实验工装 如图 2b 所示。剪切断口形貌采用 SEM 进行分析。

2 结果与讨论

图 3 所示为 1000 ℃ ×60 min 钎焊工艺下 Ti(C, N) 基金属陶瓷/BNi-7/17 4PH 沉淀硬化不锈钢接头 的微观结构。钎缝区靠近 17-4PH 沉淀硬化不锈钢 一侧为连续的浅色相,结合表 2 能谱分析可知其为 (Ni,Cr) 固溶体 (图 3a 区域 1); 靠近金属陶瓷一侧由 浅色相和灰色相组成,结合能谱可知,前者为 (Ni,Cr) 固溶体,后者为含有铬钛的磷化镍相 (图 3a 区域 2)。 此外,金属陶瓷靠近钎缝的区域也有灰色相存在,其 分布范围如图 3 中区域 3 所示,距离钎缝 - 金属陶 瓷界面大约 40 µm,能谱显示其成分与钎缝中灰色相 基本相同,为含铬钛的磷化镍相。从图中白色箭头所

表 1 17-4PH 沉淀硬化不锈钢、Ti(C,N) 基金属陶瓷及 BNi-7 钎料的化学成分 (质量分数,%) **Table 1** Chemical compositions of 17-4PH steel, Ti(C,N) cernet, and BNi-7 filler (%, mass fraction)

$17-4\mathrm{PH}$	С	Cr	Ni	\mathbf{Cu}	Nb	Fe
	0.04	16.5	4.25	3.6	0.25	Bal.
BNi-7	Cr	P	С	_	_	Ni
	14.0	10.2	0.1	-	-	Bal.
Ti(C,N) cermet	TiN	TiC	Mo	_		Ni:Cr(4:1)
	4	40	2	_	_	Bal.

图 1 Ti(C, N) 基金属陶瓷的微观结构 **Fig.1** The microstructure of Ti(C, N) cermet

- 图 3 (a)Ti(C,N) 基金属陶瓷/BNi-7/17-4PH 沉淀硬 化不锈钢钎焊接头 (1000 ℃ ×60 min) 微观结构,
 (b) 钎缝区局部放大图
- Fig.3 (a) Microstructures of Ti(C, N) cermet/BNi-7/17-4PH precipitation-hardened stainless steel joint brazed at 1000 °C for 60 min and (b) magnified view of brazing seam as shown by rectangle in (a)

示及图 3b 中可明显观察到, 钎缝中存在较多缩松, 这 必然会严重降低接头强度。

图 4 为 1050 ℃ ×60 min 钎焊工艺下 Ti(C,N) 基金属陶瓷/BNi-7/17-4PH 沉淀硬化不锈钢钎焊接 头的微观结构,结合表 3 能谱分析结果,钎缝同样由 浅色 (Ni,Cr) 固溶体 (图 4a 区域 1) 和灰色含铬钛的 磷化镍相 (图 4a 区域 2) 构成,但其分布与 1000 ℃ ×60 min 钎焊工艺时发生了很大的变化,同时,在 靠近钎缝的金属陶瓷一侧也有灰色磷化镍相的分布

- 表 2 Ti(C,N) 基金属陶瓷/BNi-7/17-4PH 沉淀
 硬化不锈钢钎焊接头 (1000 ℃ ×60 min) 能
 谱分析结果 (质量分数, %)
- Table 2The EDS analysis of Ti(C, N)
cermet/BNi-7/17-4PH precipitation-
hardened stainless steel joint brazed at
1000 C for 60 min (%, mass fraction)

Marked phase	Р	Ti	Cr	Fe	Ni
1	-	_	19.04	6.56	74.40
2	23.28	9.76	21.71		46.25
3	23.32	10.68	23.18	42.82	

(图 4a 区域 3)。庄鸿寿等人在采用 BNi-7 连接不 锈钢的研究中发现,由于磷在不锈钢中的扩散作用很 弱, 脆性磷化物在钎缝中间连续分布, 造成其连接强 度较差; 经 1000 ℃ ×1 h 扩散处理后靠近母材 (不锈 钢)的镍固溶体区扩大,中间区域磷化物区域有略微 缩小趋势^[9]。从图 4 可以看出在 17-4PH 沉淀硬化不 锈钢靠近钎缝侧存在沿晶析出相,但数量较少,说明 磷向不锈钢中的扩散程度较低,这与庄的研究结果一 致。但实验中磷化物并不集中于钎缝中间,而是在钎 缝-Ti(C,N) 基金属陶瓷界面两侧分布。图 4b 为钎 焊接头磷元素分布的线扫描结果,从中可以看出,磷 在距离钎缝-Ti(C,N) 基金属陶瓷界面 150 μm 处 (图 4a 区域 4) 仍有大量分布,结合能谱分析可知,该处 灰色相中磷含量和钎缝中含铬钛的磷化镍相成分基 本一致,这和一般扩散过程中随距离增加浓度逐渐降 低的变化趋势不符。该钎焊工艺下钎缝中基本不存

- 图 4 (a)Ti(C, N) 基金属陶瓷/BNi-7/17-4PH 沉淀硬化不锈钢钎焊接头 (1050 ℃ ×60 min) 微观结构 (b) 磷元素 EDS 线扫描图谱, (c) 钎缝区局部放大图
- Fig.4 (a) Microstructures of Ti(C, N) cermet/BNi-7/17-4PH precipitation-hardened stainless steel joint brazed at 1050 °C for 60 min, (b) element distribution of phosphorus in the brazed joint, and (c) magnified view of brazing seam as shown by rectangle in (a)

575

- 表 3 Ti(C, N) 基金属陶瓷/BNi-7/17-4PH 沉淀 硬化不锈钢钎焊接头 (1050 ℃ ×60 min) 能 谱分析结果 (质量分数, %)
- Table 3The EDS analysis of the Ti(C, N)cermet/BNi-7/17-4PHprecipitation--hardened stainless steel joint brazed at1000 °C for 60 min (%, mass fraction)

Marked phase	Р	Ti	Cr	Fe	Ni
1	0.57	1.59	16.60	6.20	75.04
2	21.68	9.88	19.50	2.39	46.55
3	23.07	9.77	18.28	_	48.88
4	22.51	9.45	18.3		49.74

在孔洞等缺陷,从图 4c 钎缝 - 金属陶瓷微区放大图 中可以看出,界面结合情况良好。

图 5 为 1100 ℃ ×60 min 钎焊工艺时 Ti(C,N) 基 金属陶瓷/BNi-7/17-4PH 沉淀硬化不锈钢接头的微 观结构,结合表 4 能谱分析可知,尽管钎缝中仍由浅 色 (Ni,Cr) 固溶体 (图 5a 区域 1) 和灰色含铬磷化镍 相 (图 5a 区域 2) 组成,其分布规律发生了很大的变 化。磷化镍相在钎缝中所占比例明显减少,且该相较 为细小,不再成片连续分布:同时,如图 5b 所示的磷 元素分布的线扫描图可以看出,相比于 1050 ℃时,磷 元素在金属陶瓷一侧的分布范围进一步扩大。区域 4 能谱分析表明该灰色相为含铬钛的磷化镍相,此处距 离钎缝 -Ti(C,N) 基金属陶瓷界面约 300 μ m。钎缝中 未观察到有孔洞等缺陷的存在,且通过图 5c 可以看 出,界面结合情况良好。

图 6 为共晶钎焊过程中相图示意图, 其中 T_b 为 钎焊温度, C₀ 为 BNi-7 共晶钎料原始成分 (P, 10%),

C1 和 C2 分別为在 T₆ 温度下钎料与母材互溶后达 到固液平衡状态时的固相和液相成分。BNi 7 钎料为 Ni-Cr-P 共晶成分, 共晶温度为 888 ℃, 金属陶瓷粘 结相为 NiCr 合金, 当钎焊温度 T_b 高于共晶温度时, 共晶钎料溶化形成液相 (Co 成分) 后, 金属陶瓷粘结 相将不断溶解于液态钎料中,液相数量逐渐增多,液 相成分由 Co 点向 C 1 点偏移。由于溶解过程激活能 较低,达到固液平衡的时间较短,通常能够在十几分 钟之内完成^[10],因此,本实验体系在钎焊时间内可以 达到如图 6 所示的 Tb 温度下的固液平衡。由于磷在 钢及高温合金中溶解度及扩散系数很低^[9], C₂处磷 含量近似为冬,因此,在达到固液平衡态后,磷在液相 中浓度基本保持不变,液相数量也基本保持不变,也 就是说,在钎焊温度下保温过程中钎料一直为液态。 钎料的固液平衡成分点为钎焊温度与共晶反应固相 线和液相线交点,此时,固液界面处固相成分为 C2. 液相成分为 C₁。

在钎焊后降温时,由于钢的导热系数高于金属陶 瓷、靠近 17 4PH 沉淀硬化不锈钢一侧液相优先凝 固,先析出成分为 C₂ 的镍固溶体,并造成剩余液相 中溶质元素 (磷)的富集,因此,在图 3-5 中靠近钢 一侧钎缝完全由先析出浅色镍固溶体组成。同时,从 图 4b 和 5b 磷在接头中的线分布情况也可以看出, 磷在钢及相邻的镍固溶体中含量较少,在靠近金属陶 瓷侧钎缝及金属陶瓷中的分布较多。由于钎缝处于 试样内部,冷却较慢,此处将最后凝固。随温度降低, 凝固过程的进行,钎缝成为固态和液态共存的凝固区 域。枝晶间的通道变窄,阻碍增加,合金的流动性变 差,合金液相不易对孔洞进行补缩,而且枝晶之间互 相搭接,甚至形成封闭区域而无法补缩^[11]。钎焊温

图 5 (a)Ti(C,N) 基金属陶瓷/BNi 7/17-4PH 沉淀硬化不锈钢钎焊接头 (1100 ℃ ×60 min) 微观结构,
 (b) 磷元素 EDS 线扫描图谱, (c) 钎缝区局部放大图

Fig.5 (a) Microstructures of Ti(C, N) cermet/BNi-7/17 4PH precipitation-hardened stainless steel joint brazed at 1100 °C for 60 min, (b) element distribution of phosphorus in brazed joint, and (c) magnified view of brazing seam as shown by rectangle in (a)

- 表 4 Ti(C, N) 基金属陶瓷/BNi-7/17-4PH 沉淀 硬化不锈钢钎焊接头 (1100 ℃ ×60 min) 能 谱分析结果 (质量分数, %)
- Table 4The EDS analysis of the Ti(C, N)cermet/BNi-7/17-4PHprecipitation-hardened stainless steel joint brazed at1100 °C for 60 min (%, mass fraction)

Marked phase	Р	Ti	Cr	Fe	Ni
1	-	1.98	14.98	20.78	62.26
2	19.43	10.94	16.85	_	52.78
3	20.90	10.40	15.4	-	53.3
4	21.85	9.53	16.26	-	52.36

图 6 共晶钎焊过程相图示意图

Fig.6 Schematic of phase diagram of the eutectic brazing

度较低 (1000 ℃) 时, 枝晶生长速度较快, 在树枝晶接 触之前, 合金液相来不及补缩, 甚至在补缩过程中液 相也发生了凝固, 从而形成大量缩松, 如图 3b 所示。 当温度提高到 1050 ℃时, 钎缝中孔洞等缺陷基本消 失, 钎缝 - 金属陶瓷界面结合情况良好。

当钎焊温度升高时, 钎料溶解母材的能力提高, 平衡时液相增多, 磷在液相中的浓度 C₁ 降低。因为 磷在液相下的扩散速度较快, 在液 - 固界面向金属陶 瓷一侧迁移的过程中, 磷在液相中能够均匀分布并扩 散到 Ti(C,N) 基金属陶瓷侧距钎缝 - 金属陶瓷界面 较远的距离。从图 3-5 可以看出, 随钎焊温度的提高, 钎缝中单位面积内磷化镍相逐渐减小, 金属陶瓷近钎 缝一侧磷化镍相分布范围逐渐扩大。

钎焊温度和钎缝厚度等钎焊工艺参数对焊接接 头强度有着至关重要的影响。图 7 为室温下 Ti(C,N) 基金属陶瓷/BNi-7/17-4PH 沉淀硬化不锈钢接头的 抗剪强度随钎焊温度及钎缝厚度的变化曲线。由图 7 可知,随钎焊温度升高,抗剪强度随之提高。当 钎焊温度为 1100 ℃时,抗剪强度达到最大值;当

- 图 7 不同钎焊温度下 Ti(C, N) 基金属陶瓷/BNi-7/17-4PH 沉淀硬化不锈钢焊接接头的抗剪强度 随钎缝厚度的变化
- Fig.7 Variation of shear strength of Ti(C, N) cermet and 17–4PH joint vacuum brazed at different brazing temperatures with the brazing seam thickness

钎焊温度为 1000 ℃时, 接头抗剪强度很低, 只相当 于 1100 ℃时最大值的 10%。钎焊温度为 1100 ℃和 1050 ℃时, 接头抗剪强度随钎缝厚度增加先升高后 降低, 并在 50 μm 左右时获得最大值, 其中 1100 ℃ 和 1050 ℃下最大值分别为 454 MPa 和 395 MPa, 而 在 1000 ℃时, 钎焊接头抗剪强度随钎缝厚度变化不 明显, 强度值偏低。

1050 ℃和 1100 ℃下接头抗剪强度随钎缝厚度 增加先升后降主要是由于钎缝厚度大,有利于接头残 余应力的缓解,有利于接头强度的提高;但钎缝厚度 增加时磷含量相应增加,在接头中的分布均匀化变得 困难,在钎缝中形成的脆性磷化镍相数量增加,对接 头强度产生负面影响。因此钎缝厚度在缓解残余应 力和控制脆性相数量之间存在最佳值,在本实验体系 中在 50 μm 左右时获得最佳接头强度。因此,可以得 出结论,在钎焊工艺为 1100 ℃ ×60 min、钎缝厚度 为 50 μm 时,接头强度获得最大值 454 MPa,高于采 用铜基钎料^[4]和银基钎料^[7]时的钎焊接头强度,同 时,由于溶解过程使得金属陶瓷和钎料界面结合情况 较好,其接头强度也高于采用 BNi-7 连接的 316 不 锈钢的接头强度^[12]。

图 8 为采用镍基钎料 BNi-7 连接的 Ti(C,N) 基 金属陶瓷和 17-4PH 沉淀强化不锈钢接头剪切断口 的典型形貌照片。钎焊温度为 1000 ℃时,接头断裂 于钎缝 - 金属陶瓷界面靠近钎缝一侧 (图 8a),在 图 8a 箭头所示区域放大图中,区域 1 为金属陶瓷 (EDS,未列出),区域 2 表明在金属陶瓷表面粘附有一 定含量的钎料。结合该温度下接头微观结构中存在大

图 8 钎焊接头剪切断口形貌: (a)1000 ℃, (b)1050 ℃, and (c)1100 ℃ Fig.8 Fractographs of brazed joints: (a) 1000 ℃, (b) 1050 ℃, and (c) 1100 ℃

量缩松 (图 3b) 及其接头平均强度低于 50 MPa(图 7), 说明钎缝中缩松的存在是接头强度降低的关键。 钎焊温度为 1050 ℃时, 断口大部分以平直界面为主 (图 8b), 由微区放大图发现, 其形貌以剪切断裂过程 中形成的侧向剪切变形为主, 如图 8b 中区域 1 所示, 该区域能谱分析显示各元素比例与图 3b 钎缝中磷化 镍相基本一致 (EDS, 未列出), 这说明断裂过程裂纹 主要沿磷化镍相在钎缝过程中扩展, 也就是说在该钎 焊温度下, 镍磷形成的脆性化合物是焊接接头中的薄 弱环节。

当温度提高到 1100 ℃时, 断口形貌发生了明显 的变化, 断口表面存在明显的起伏, 其形貌可分为多 个区域 (图 8c)。图 8c 中区域 1 形貌与 8b 图中区 域 1 相似, 能谱分析结果相近, 说明该温度下钎焊接 头中存在较大含量的脆性镍磷化合物并且是影响接 头强度的薄弱环节。图 8c 中区域 2 所示形貌中塑性 变形较区域 1 更加明显, 能谱分析显示其成分与钎缝 中镍固溶体相一致; 而区域 3 形貌显示该区域发生了 强烈的塑性变形, 且断裂于金属陶瓷靠近钎缝处, 这 说明钎料与金属陶瓷界面结合情况良好, 这跟图 7 中 剪切强度和温度关系的曲线变化趋势相对应, 说明在 1100 ℃时, 镍磷化合物在钎缝中单位面积内比例减 少, 不在整个钎缝中形成连续的大块脆性相, 从而大 幅提高了其接头强度。

3 结 论

1. 采用 BNi-7 针料可以实现 Ti(C,N) 基金属陶 瓷与 17-4PH 沉淀硬化不锈钢的连接, 接头界面钎缝 主要由 (Ni, Cr) 固溶体和镍磷化合物相构成。

2. 在所选择的工艺参数范围内, 钎缝室温抗剪 强度随钎焊温度的升高而提高, 随钎缝厚度的增加先 升后降。在钎焊工艺为 1100 ℃ ×60 min、钎缝厚度 为 50μm 时, 接头强度获得最大值 454 MPa。

参考文献

- S.Y.Zhang, Titanium carbonitride-based cermets: processing and properties, Mater. Sci. Eng., A163, 141(1993)
- 2 P.Ettmayer, W.Lengauer, The story of cermets. Powder. Metall. Int., 21, 37(1989)
- 3 G.S.Upadhyaya, Materials science of cemented carbides an overview, Mater. Des., 22, 483(2001)
- 4 WANG Quanzhao, LIU Yue, ZHANG Yuzheng, GUAN Dehui, BI Jing, The vacuum brazing of TiC/NiCr cermet and 1Cr13 stainless steel, Transactions of the China Welding Institution, 27(8), 43(2006) (王全兆,刘 越,张玉政,关德慧,毕 敬, TiC/NiCr 金属陶瓷
- 与 1Cr13 不锈钢的真空钎焊,焊接学报,27(8),43(2006))
 5 YE Dameng, XIONG Weihao, XU Hua'an, Current statues and development of welding technique of cermet/metal, Mater. Rev., 20(8), 72(2006)
 (叶大萌,熊惟皓,徐华安,金属陶瓷与金属焊接技术的研究现状 与展望,材料导报,20(8),72(2006))
- 6 LIU Ning, *Ti(C,N)-based cermets*, (Hefei, Hefei University of Technology Press, 2009) p.12
 (刘 宁, Ti(C,N) 基金属陶瓷材料 (合肥, 合肥工业大学出版社, 2009) p.12)
- 7 LI Xianfen, XU Daorong, LIU Ning, The flame brazing of Ti(C,N)-based cermet and 45 steel, Cemented Carbide, 20(2), 94(2003)

(李先芬,徐道荣,刘 宁, Ti(C,N) 基金属陶瓷与 45 号钢火焰 钎焊试验研究,硬质合金, **20**(2), 94(2003))

- 8 L.X.Zhang, J.C.Feng, B.Y.Zhang. Ag-Cu-Ti alloy for brazing TiC cermet/steel, Mater. Lett., 59(1), 110(2005)
- 9 E.Lugscheider, H.S.Zhang, *High Temperature Brazing*, (Beijing, National Defense Industry Press, 1989) p.82
- W.F.Gale, D.A.Butts, Transient liquid phase bonding, Sci. Technol. Weld. Joining, 9, 283(2004)
- 11 HU Hanqi, *Theories of Metal Solidfication*, (Beijing, China Machine Press, 2007) p.139

(胡汉起, 金属凝固原理, (北京, 机械工业出版社, 2007) p.139) 12 E.Lugscheider, K.D.Partz, High temperature brazing of

stainless steel with nickel base filler metal BNi-2, BNi-5 and BNi-7, Weld. Res. Suppl., 6, 160(1983)