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a b s t r a c t

The average thermo-elastoplastic properties of particle reinforced metal matrix composites (PRMMC)
including the average coefficient of thermal expansion (CTE), Young’s modulus, Poisson’s ratio and isotro-
pic hardening function are investigated. Computational homogenization method based on 3D realistic
microstructures (RMs) is employed. Unit cell microstructure (UCM) based model and analytical models
are also employed for comparison. As an illustration, 17 vol.%SiCp (3 lm)/2124Al composite is studied.
Compared to RMs, UCM underestimates the average CTE and Poisson’s ratio, while it overestimates the
average Young’s modulus and isotropic hardening function. The minimum representative volume ele-
ment (RVE) size for determining the average CTE, Young’s modulus and Poisson’ ratio is d = 15, d = 20
and d = 20, respectively, where d is the size ratio of microstructure model, which is defined by the ratio
of the side length of the RVE to the nominal mean radius of reinforcement. The minimum size of RVE for
estimating average isotropic hardening function of plastic deformation is dependent on both the temper-
ature and the plastic deformation condition.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Particle reinforced metal matrix composites (PRMMC) are
widely used due to their enhanced properties, e.g. strength, stiff-
ness and toughness, which depend on many factors such as the
content of reinforcements, the constituents’ physical and morpho-
logical natures. Traditionally PRMMC is modeled as homogeneous
medium in classic continuum medium. Such a modeling method
does not take into account the intra-phase field fluctuations which
appear in PRMMC and affect the properties significantly, especially
the nonlinear properties. Multi-scale simulation methods permit to
estimate the average properties of heterogeneous materials (e.g.
composites) and calculate the intra-phase fields such as tempera-
ture, strain and stress fields when loads act on heterogeneous
materials. Therefore, the multi-scale method provides a powerful
tool for researching PRMMC and can be employed for the optimal
design of PRMMC components/structures and for ensuring the
safety of industrial applications of PRMMC.

An efficient and well-known multi-scale simulation method
proposed by Ghosh et al. [1] is presented to compute a classical
continuum mechanics problem at the macro-scale which is cou-
pled with a micromechanical problem at the micro-scale. In this
method, the average thermo-elastoplastic properties of PRMMC
for describing its macroscopic thermo-elastoplastic constitutive
model including the average coefficient of thermal expansion
(CTE), Young’s modulus, Poisson’s ratio and isotropic hardening
function are required. The objective of this work is to develop an
integrated micromechanical model to determine the average
thermo-elastoplastic properties of PRMMC and to discuss the
required minimum size of the representative volume element
(RVE).

The well-known concept of RVE was firstly defined by Hill [2]
and usually used for determining the average properties of hetero-
geneous materials. For this purpose, the size of the considered
microstructure domain for the homogenization must be large
enough to ensure that the averaged properties are ‘representative’
and still small enough compared to the typical size of the macro-
scopic component or structure. Therefore, it is important to find
out the minimum size of RVE to estimate the average properties
of PRMMC.

In the past two decades, many researchers [3–13] have studied
the minimum RVE size for estimating the average properties of
composites. However, most previous studies focused on the elastic
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properties (e.g. Young’s modulus and Poisson’s ratio) or the ther-
mal properties (e.g. thermal conductivity, CTE). Besides, most exis-
tent numerical models use idealized geometry models, e.g. unit cell
model, which usually have regular shape and periodic structure.
Such models do not reflect the true intra-phase field fluctuations
which have a major impact on the average properties of compos-
ites, especially the plastic properties [14]. Recently, Galli et al.
[15] investigated the minimum RVE size for average stress–strain
of PRMMC based on a three-dimensional (3D) microstructure
model with multi-irregular polyhedral particles. They showed that
the minimum RVE size for average stress–strain depended on the
volume fraction of particles. Nevertheless, no literature has sys-
tematically investigated the minimum RVE size to determine aver-
age thermo-elastoplastic properties of PRMMC in 3D realistic
microstructure model.

In this study, the average thermo-elastoplastic properties of
PRMMC are estimated via computational homogenization based
on 3D realistic microstructures (RMs). The detailed methodology
for constructing a 3D realistic microstructure (RM) is proposed in
Reference [16]. In order to determine the minimum RVE size, 3D
RMs with different domain sizes are employed. The unit cell micro-
structure (UCM) based homogenization model and classical analyt-
ical models of average properties of PRMMC are also studied for
comparison. As an illustration of the computational homogeniza-
tion, a 17 vol.%SiCp (3 lm)/2124Al composite is studied.
2. Homogenization theory

The average thermo-elastoplastic properties of PRMMC studied
in the present work include the coefficient of thermal expansion
(CTE), the elastic properties (include the Young’s modulus and
the Poisson’ ratio) and the plastic yield property (the isotropic
hardening function). With these properties, the average constitu-
tive model of PRMMC can be formulated. In this integrated model,
the damage effects of PRMMC such as the particle breaking, the
matrix damage and the interfacial debonding are not considered.

2.1. Governing equation

A bounded domain V with the boundary @V is considered. The
macro-scale equilibrium equation of mechanical problem reads

r � r ¼ 0; ð1Þ

where r is the stress tensor.

2.2. Micro-constitutive models

The J2 flow theory of plasticity is used for the metal matrix [17],
according to which the von-Mises yield function of the matrix is

f ðr;pmÞ ¼
ffiffiffiffiffiffiffiffi
3=2

p
kdevðrÞk � rðpmÞ; ð2Þ

where f denotes the yield function, p indicates the accumulated
plastic strain, subscript m denotes the matrix, khk denotes the
norm of the indicated tensor, dev(h) denotes the deviator of the
indicated tensor,

ffiffiffiffiffiffiffiffi
3=2

p
kdevðrÞk denotes the von-Mises equivalent

stress and r(pm) denotes the yield stress which is computed by
the Voce type isotropic hardening rule [18]

rðpmÞ ¼ r1 þ hpm þ ðr0 � r1Þ expðlpmÞ; ð3Þ

where r0 is the initial yield strength, r1 is the ultimate strength, h
and l are material constants.

Since the reinforcing particles in PRMMC are usually brittle
ceramic particles, they seldom experience plastic deformation.
The reinforcing particles are modeled as linear elastic materials
in the present work.
2.3. Hill’s condition and boundary condition

For a material with a perfectly bonded microstructure and in
the absence of body forces, an identity is known as [2,19]

hr : ei � hri : hei ¼ 1
jV j

Z
@V
fu� x � h$� uig � fn � ðr� hriÞgdS; ð4Þ

where hhi denotes the volume average function with respect to the
indicated argument, i.e.

h�i ¼ 1
jV j

Z
V
�dV ; ð5Þ

jVj denotes the volume of the bounded domain V.
For two basic physically important types of boundary condi-

tions, the right-hand side of Eq. (4) vanishes. They are pure linear
displacement boundary condition

uj@V ¼ fx ð6Þ

and pure traction boundary condition

tj@V ¼ nn; ð7Þ

where f and n are specific second order tensors [20].
With these two special types of boundary conditions, the aver-

age of stress work equals the work of average stress

hr : ei ¼ hri : hei: ð8Þ

This identity was obtained by Hill [2] and named after him as Hill’s
condition. In the present work, pure linear displacement boundary
conditions are employed in finite element simulation based on RVEs
for determination of homogenized composite properties. It is note-
worthy that the tensor f may differ when computing different aver-
age properties.

2.4. Homogenization of CTE

To compute the average linear thermal expansion tensor hai,
the tensor f is set as [10]

f ¼
0 0 0
0 0 0
0 0 0

2
64

3
75: ð9Þ

The relationship between the average elasto-plastic strain ten-
sor heepi and the average linear thermal expansion tensor can be
written as

heepi ¼ �haiðT � T0Þ: ð10Þ

Hence the average linear thermal expansion tensor is evaluated by

hai ¼ �heepi=DT: ð11Þ

If the employed microstructure is assumed to be isotropic, the aver-
age CTE can be estimated by

hai ¼ 1
3
ðha11i þ ha22i þ ha33iÞ; ð12Þ

where ha11i, ha11 i and ha11i are the three main diagonal compo-
nents of hai.

Classical approaches for evaluating the average CTE of PRMMC
includes the Turner, Kerner and Schapery models. The Turner
model [21] is

a ¼ a1C1K1 þ a2C2K2

C1K1 þ C2K2
; ð13Þ

where a is the CTE, subscripts 1 and 2 denote the matrix and the
reinforcement, respectively, C means the volume fraction,
C1 + C2 = 1 and K denotes the bulk modulus.
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The Kerner model [22] is

a¼ a1C1þa2C2þða2�a1ÞC2C1
K2�K1

C2K2þC1K1þ3K2K1=ð4G1Þ
; ð14Þ

where G denotes the shear modulus.
The Schapery model [23] gives the bounds of CTE which are

au ¼ a2 þ ða1 � a2Þ
1=Kl � 1=K2

1=K1 � 1=K2
; ð15Þ

al ¼ a2 þ ða1 � a2Þ
1=Ku � 1=K2

1=K1 � 1=K2
; ð16Þ

where au denotes the Schapery upper bound of average CTE, al

denotes the Schapery lower bound of average CTE, Kl and Ku are
the Hashin–Shtrikman lower and upper bounds of bulk modulus
K which are explicitly written in Eqs. (24) and (26).

2.5. Homogenization of elastic properties

The following tensors

f ¼
b 0 0
0 0 0
0 0 0

2
64

3
75;

0 0 0
0 b 0
0 0 0

2
64

3
75;

0 0 0
0 0 0
0 0 b

2
64

3
75 ð17Þ

are used to compute hKii and hGii with the subscript i = 1, 2 and 3

hKii �
1
3
htrri
htrei

����
i

; ð18Þ

hGii �
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hdevðrÞi : hdevðrÞi
hdevðeÞi : hdevðeÞi

s �����
i

: ð19Þ

then hEii and hmii are computed using the relations

hEii ¼
9hKiihGii

3hKii þ hGii
; ð20Þ

hmii ¼
3hKii � 2hGii
6hKii þ 2hGii

ð21Þ

where the subscript i = 1, 2 and 3.
In addition to numerical computation of the average properties

of PRMMC based on homogenization theory, classical approaches
are used for evaluating the bounds of average properties. Under
the uniform stress field assumption by Reuss [24], the average
Young’s modulus of PRMMC can be computed by

El ¼
E1E2

E1C1 þ E2C2
: ð22Þ

Under the uniform strain field assumption by Voigt [25], the aver-
age Young’s modulus of PRMMC can be computed by

Eu ¼ E1C1 þ E2C2: ð23Þ

The Voigt-Reuss bounds are composed of Eqs. (22) and (23), where
the subscripts l and u denote the lower and upper bounds, respec-
tively. Hashin and Shtrikman [26,27] developed improved
Hashin–Shtrikman bounds by employing the Principle of Minimum
Potential Energy (PMPE). The Hashin–Shtrikman lower bounds of
bulk modulus K and shear modulus G are

Kl ¼ K1 þ
C2

1=ðK2 � K1Þ þ 3C1=ð3K1 þ 4G1Þ
; ð24Þ

Gl ¼ G1 þ
C2

1=ðG2 � G1Þ þ ½6C1ðK1 þ 2G1Þ�=½5G1ð3K1 þ 4G1Þ�
: ð25Þ

And the Hashin–Shtrikman upper bounds of K and G are

Ku ¼ K2 þ
C1

1=ðK1 � K2Þ þ 3C2=ð3K2 þ 4G2Þ
; ð26Þ

Gu ¼ G2 þ
C1

1=ðG1 � G2Þ þ ½6C2ðK2 þ 2G2Þ�=½5G2ð3K2 þ 4G2Þ�
; ð27Þ
where subscripts 1, 2, l and u have the same meanings as those in
Eqs. (22) and (23). The corresponding bounds of Young’s modulus
can be computed by

El ¼
9KlGl

3Kl þ Gl
; ð28Þ

Eu ¼
9KuGu

3Ku þ Gu
: ð29Þ

The bounds of Poisson’s ratio as developed by Zimmerman [28]
are

ml ¼
3Kl � 2Gu

6Kl þ 2Gu
; ð30Þ

mu ¼
3Ku � 2Gl

6Ku þ 2Gl
: ð31Þ
2.6. Homogenization of isotropic hardening function

To compute the average plastic properties of PRMMC, the tensor
f is set as

f ¼
h 0 0
0 0 0
0 0 0

2
64

3
75; ð32Þ

where h is a constant.
To evaluate the average isotropic hardening function of PRMMC,

the average von-Mises equivalent stress hrMisesi and the average
effective plastic strain hpi are required to be computed preliminar-
ily, i.e.

hrMisesi ¼
ffiffiffiffiffiffiffiffi
3=2

p
kdevðhriÞk; ð33Þ

hpi ¼ 1
jV j

Z
C2 jV j

pmdV : ð34Þ

Note that in Eq. (34) the effective plastic strain in the particles is
zero because the reinforcing particles are linear elastic material.
Therefore, the average effective plastic strain hpi only takes account
of the effective plastic strain in the matrix. After hrMisesi and hpi are
computed, the average isotropic hardening function of PRMMC is
evaluated via Akima spline interpolation [29] of r(hpi) with respect
to hpi.
3. Numerical computations and experiments

3.1. Material

The composite material 17 vol.% SiCp (3 lm)/2124Al quenched
from 505 �C to room temperature of 25 �C is investigated in the
present work. The 2124Al matrix can be viewed as a T0 heat treat-
ment state. Since elastic properties, i.e. the Young’s modulus, the
Poisson’s ratio, and the CTE of aluminum alloys are independent
of the heat treatment state, these properties of matrix material
are directly taken from 2124Al-T851 alloy [30]. The yield strength
and the ultimate tensile strength of 2124Al-T0 are experimentally
measured at room temperature. Since the high temperature (e.g.
>300 �C) strengths of aluminum alloys are also independent of heat
treatment, the yield strength and the ultimate tensile strength of
2124Al-T0 at high temperature are directly taken from 2124Al-
T851 alloy [30]. The strength of 2124Al-T0 between room temper-
ature and 300 �C is not measured and no concerning literature is
found. So the data between room temperature and 300 �C are
approximated by quadratic interpolation. The temperature depen-
dent properties of 2124Al and SiC [31] are plotted in Fig. 1. The
plastic properties of 2124Al are h = 0 and l = 20 which are defined
in Eq. (3).
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3.2. Microstructures

The microstructure generation procedure is composed of two
steps: (i) generating arbitrary polyhedrons and (ii) placing random
polyhedrons at random positions in a RVE. Arbitrary convex poly-
hedrons are generated by random cutting technique, i.e. cutting
the primitive object with several random planes. Then these arbi-
trary convex polyhedrons are randomly rotated and then added to
a cube box using the random sequential adsorption (RSA) scheme.
More details about generating the 3D RM have been described in
reference [16].

In order to determine the minimum size of RVE, serial micro-
structures with different domain sizes are monitored as shown in
Fig. 2. Here a size ratio d of microstructure is introduced

d ¼ 2L
D
; ð35Þ

where L is the side length of the microstructure domain and D is the
mean diameter of particles.

The RVE size can be determined by the following method. Let Q
denote the computed target parameter, and i an index to identify
the microstructure model. The relative deviation etp

i of the target
parameter in percent is computed by

etp
i ¼

Q i � Q i�1

Q i

����
����� 100%; ð36Þ

where superscript tp is short for the target parameter, i = 1, 2, 3, 4
denote the RM with d equaling to 5, 10, 15 and 20, respectively.
Note that when i – 0, i.e. for the UCM, there is no relative deviation
etp

0 , because the Q0 is the start reference for computing etp
1 .

The UCM is generated by embedding a cubic-shaped particle
into the center of a cube box. The circumscribed sphere of the par-
ticle has a diameter of 3 lm. All microstructure models are shown
in Fig. 2. The minimum RVE size is declared when the relative devi-
ation etp

i is smaller than a given tolerance.

3.3. Mesh size

In the present work, all microstructures are divided
into unstructured tetrahedrons with 4-nodes by the Delaunay
Fig. 1. Temperature dependent material properties o
triangulation software TetGen [32]. Linear shape functions are
used. The mesh density can be controlled by the maximum tetrahe-
dron volume constraint a. Four values of a are chosen, i.e. 1.0, 0.1,
0.01 and 0.001. The appropriate mesh size can be determined by
using the relative deviation ems

j of the target parameter computed
using different mesh size

ems
j ¼

Qj � Q j�1

Q j

����
����� 100%; ð37Þ

where ms is short for mesh size, Q again denotes the target param-
eter, j = 1, 2, 3 denote that the mesh size a equals to 0.1, 0.01 and
0.001, respectively. Note that when j – 0, i.e. when the mesh size
a equals to 1.0, there is no relative deviation ems

0 , because the Q0 is
the start reference for computing ems

1 . The appropriate mesh size
is selected when the relative deviation ems

j is smaller than a given
tolerance.

The software MSFESL (Multi-scale finite element simulation
laboratory) is developed by the authors through object oriented
techniques. Generation of 3D realistic microstructure and compu-
tational homogenization of average properties are carried out in
MSFESL running on a ThinkStation-D20 with 2 Xeon 5690 CPUs
(3.47 GHz) and 32 GB memory.

3.4. Experimental measurements of the average properties

Experimentally measured results are used in order to assess the
accuracy of the computed homogenized properties. In the present
study, the measured average CTE, Young’s modulus and Poisson’s
ratio of 17 vol.%SiCp (3.5 lm)/2009Al composite at room tempera-
ture are used as the approximate references. These approximate
references should be reasonable, since the chemical composition
of 2124Al, 4.4 wt.%Cu–1.6 wt.%Mg–0.6 wt.%Mn, is very close to
that of 2009Al, 4.5 wt.%Cu–1.5 wt.%Mg. The average Young’s mod-
ulus and Poisson’s ratio of the 17 vol.%SiCp (3.5 lm)/2009Al com-
posite were measured by the ‘‘Impact resonance method’’ on
RFDA HTVP 1750-C (IMCE). Though the experimental size of SiCp
is slightly larger than that used in the computations (3 lm), the
dominant factor determining the elastic modulus is the content
of particles [33]. Besides, the Poisson’s ratio m can be obtained from
the elastic moduli by
f SiC [31] and 2124Al determined from Ref. [30].



Fig. 2. Microstructures with different size ratios d: (a) the unit cell microstructure with d � 1, (b)–(e) realistic microstructures with d = 5, 10, 15 and 20, respectively. The
mean diameter of particles is 3 lm for all microstructures.

Fig. 4. Meshing a random 3D shape using tetrahedron (s): (a) the minimum
number of tetrahedron(s) is one for meshing a tetrahedron; (b) the minimum
number of tetrahedron(s) is two for meshing a hexahedron with triangular faces.
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m ¼ E
2G
� 1: ð38Þ

Therefore, the measured average Young’s modulus and Poisson’s
ratio of 17 vol.%SiCp (3.5 lm)/2009Al composite can be used for
comparison with the computational homogenization results.

4. Results and discussion

4.1. Effect of mesh size

Fig. 3 shows that the mesh density (characterized by the
number of mesh nodes) decreases continuously with increasing
Log10(a) until the minimum density is achieved at Log10(a) P �1,
i.e. a P 0.1. This is because there are a minimum number of tetra-
hedrons for meshing a 3D random particle. A 3D illustration of
such phenomenon is shown in Fig. 4. Furthermore, since the parti-
cle has a minimum number of tetrahedrons, the matrix should also
have a minimum number of tetrahedrons to ensure the mesh
continuity.

As shown in Fig. 3, the quantitative relationship between the
number of mesh nodes N and a can be fitted by

N ¼ expfa0 þ a1log10ðaÞ þ a2½log10ðaÞ�
2g ð39Þ

with a0 = 0.71657, a1 = �1.71134 and a2 = 0.11870 for the RM with
d = 10. It can be seen that for the RM with d = 10 and a = 0.01 we
obtain N = 101,071. Then N increases rapidly to 1,011,201 when a
decreases to 0.001.

Fig. 5 shows the effects of mesh density on the average elastic
properties and the relative deviations of RM with d = 10. With
Fig. 3. Number of mesh nodes as a function of the maximum tetrahedron volume
constraint a for RM with d = 10.
increasing the number of mesh nodes (i.e. decreasing of mesh size
a) continually, one can observe convergences of both average
Young’s modulus and Poisson’s ratio. Furthermore, as shown in
Fig. 5(b), the relative deviation of the Young’s modulus for a = 1.0
is 2.9%. This value increases slightly to 3.8% for a = 0.1 and then
decreases to 1.5% for a = 0.01. A similar behavior can be observed
in the situation of Poisson’s ratio. As shown in Fig. 5(d), the relative
deviation of the Poisson’s ratio for a = 1.0 is 1.4%. It slightly
increases to 1.7% for a = 0.1 and then decreases to 0.7% for
a = 0.01. Considering both computation accuracy and cost, the
acceptable mesh density can be selected with the mesh size
a = 0.01. The meshed RM with d = 10 by using a = 0.01 is shown
in Fig. 6. It can be seen that the sizes of mesh elements are nearly
uniform and the mesh density is appropriate.

4.2. Average CTE

In Fig. 7, the comparison of the average CTEs between different
models and experimental data is presented. The experimental data
was determined at room temperature of 25 �C by using fitting
function of the measured average CTE values [33]. Fig. 7(a) shows
that the numerically homogenized average CTE of 17 vol.%SiCp/
2124Al composite from both RMs and UCM agree well with the
experimental data. In addition, the average CTE predicted by RM
are higher than those by other models. The average CTE predicted
by the Kerner model [22] or the Schapery upper bound [23] are the
same and slightly lower than the experimental data. The computa-
tional homogenized average CTE and the measured data are higher
than those results predicted by the Kerner model, the Schapery
bounds and the Turner model [21] which gives the lowest value.

Fig. 7(b) shows that almost all relative deviations of CTEs of RMs
are smaller than 5%. The relative deviation with d = 5 is the largest



Fig. 5. Effects of mesh density on (a) the average Young’s modulus, (b) the relative deviation in the Young’s modulus, (c) the average Poisson’s ratio, and (d) the relative
deviation in the Poisson’s ratio. The temperature is 25 �C.

Fig. 6. Finite element mesh of RM with d = 10 which is generated by using the
maximum tetrahedron volume constraint a = 0.01. The number of mesh nodes is
101,071 and the number of mesh elements is 607,605.

Fig. 7. Results of average CTE: (a) Comparison between homogenization models, classical
is fitted from measured data [33] at room temperature. ‘‘S Upper’’ denotes the Schaper
deviation in average CTE for RMs with varying the size ratio d.
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and equals to 	5%. The relative deviations between the CTEs of
RMs with d = 15 and d = 20 are approximately zero, suggesting that
the minimum RVE size for determining CTE can be selected as
d = 15.

Chawla et al. [34] studied the thermo-mechanical behaviors of
composites using 2D microstructure based finite element (FE)
technique. Their results showed that the FE computed average
CTE results lay between the Turner and Kerner bounds. This is dif-
ferent from the present results which show the average CTE com-
puted by 3D RM are higher than the Turner [21] and Kerner bounds
[22]. This difference may due to the fact that the Chawla et al.’s
model is 2D. Besides, the mathematical theory (e.g. equations
and setting of boundary conditions) of computing the average
CTE of composite was not proposed in reference [34]. It is possible
that the difference of results may also be related to the difference
in the mathematical theory.

As shown in previous studies [34–36], usually the Turner model
[21] gives the lowest bound. The Turner model is based on the uni-
form strain field assumption which is not valid because it would
lead to disequilibrium tractions at the matrix-reinforcement inter-
face. The deviation of Turner model increases as the content of
reinforcements increases. The Kerner model [22] is based on the
uniform stress field assumption which is not valid because it
models computed and experimental average CTE of PRMMC. The experimental data
y upper bound and ‘‘S Lower’’ denotes the for Schapery lower bound. (b) Relative
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would lead to discontinuity of displacement at the matrix-rein-
forcement interface. In the present work, the Kerner model gives
the closest approximation to the computational homogenization
results compared to other analytical models. The Schapery bounds
of CTE are derived from the Hashin–Shtrikman bounds [26,27] of
bulk modulus. Thus, the Schapery bounds of CTE inherit the limita-
tions of the Hashin–Shtrikman bounds of bulk modulus which
assumes that the solid body is infinite [10]. In addition, as analyt-
ical models, the Turner model and the Schapery bounds neglect
microstructure attributions (e.g. the architecture and distribution
of reinforcements) and plastic yield of the matrix. Those assump-
tions and deficiencies lead to very rough predictions.

4.3. Average Young’s modulus and Poisson’s ratio

Fig. 8 plots the variation of the average Young’s moduli with
temperature calculated by different models and experimental
measurement. It can be seen that the predicted values of average
Young’s modulus by different RM are close to each other and agree
well with measured value. The UCM and the Hashin–Shtrikman
upper bound slightly overestimate the average Young’s
modulus compared to the experimental data. Compared to the
Hashin–Shtrikman bounds and computational homogenization
values, the Voigt-Reuss bounds are rough and wide apart.

Hill [2] explained the reason why the Voigt-Reuss bounds are
rough. He pointed out that neither the uniform stress field nor
the uniform strain field assumption was correct [2]. If the uniform
stress field assumption is followed, the matrix-reinforcement
interface could not remain bonded. If the uniform strain field
assumption is followed, the tractions at the matrix-reinforcement
interface could not keep equilibrium. Besides, the Voigt-Reuss
bounds do not consider the microstructure attributions. The
improved bounds, the Hashin–Shtrikman bounds, are tight. How-
ever, the Hashin–Shtrikman bounds assume that the solid body
is infinite, the microstructure is isotropic, and the average
Fig. 8. Results of average Young’s modulus: (a) Comparison between homogenization m
experimental data was measured at room temperature). ‘‘H–S Upper’’ denotes the Hash
bound. (b) Relative deviation in average Young’s modulus for RMs with varying the size

Fig. 9. Results of average Poisson’s ratio: (a) Comparison between homogenization m
experimental data are computed via Eq. (38) in which the measured shear modulus is 38.
Lower’’ denotes the Zimmerman lower bound. (b) Relative deviation in average Poisson
properties are isotropic [20]. These assumptions lead to errors in
predicted average properties and the deviation increases with
increasing the content of reinforcing particles or the anisotropy
of microstructure.

Compared to UCM and analytical models, the RMs result in
more precise estimations of the average Young’s modulus. As
shown in Fig. 8(b), the relative deviation of the average Young’s
modulus of RM with d = 5 is 	8.0% at low temperature and
decreases to 	4.0% at high temperature. The relative deviations
of different RM with d P 10 are smaller than 5%. Especially, the rel-
ative deviation of RM with d = 20 is approximately zero, suggesting
that the minimum RVE size for computing the average Young’s
modulus can be selected as d = 20.

Comparison of the average Poisson’s ratio between different
models and experimental data are plotted in Fig. 9. It can be seen
that predicted values of average Poisson’s ratio from all RM agree
well with the measured data at room temperature. Compared to
experiment and RM, the UCM underestimates the average Pois-
son’s ratio. The Zimmerman bounds [28] are relatively tight at
low temperature and continuously expand with increasing the
temperature. At higher temperature, the Zimmerman bounds are
quite rough and apart.

Fig. 9(b) shows that all relative deviations of the average
Poisson’s ratio of RM are smaller than 4.0%. Generally, when the
size ratio d increases the relative deviation of the average Poisson’s
ratio decreases continuously and numerically converges to almost
zero with d = 20. These results imply that d = 20 can be selected as
the minimum RVE size for determining the average Poisson’s ratio.
Therefore, the minimum RVE size to estimate the average elastic
properties can be selected as d = 20.

4.4. Average isotropic hardening function

Fig. 10 shows the images of average isotropic hardening func-
tions computed by different models where smooth results can be
odels, classical models computed and experimental average Young’s modulus (the
in–Shtrikman upper bound and ‘‘H–S Lower’’ denotes the Hashin–Shtrikman lower

ratio d.

odels, classical models computed and experimental average Poisson’s ratio. The
1 GPa at room temperature. ‘‘Z Upper’’ denotes the Zimmerman upper bound and ‘‘Z
’s ratio for RMs with varying the size ratio d.
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observed. As expected, the results of all microstructure models
show that: (i) with increasing temperature, the yield stress
decreases and (ii) with increasing average effective plastic strain,
the average von-Mises equivalent stress increases. Fig. 10(a) shows
that the average von-Mises equivalent stress surface computed by
the UCM is higher than that computed by any other RM. With
increasing d from 1 to 20 the average von-Mises equivalent stress
surface drops continuously.

Fig. 11 shows the relative deviations of the average isotropic
hardening function of different models. It can be found that at
the regions of low temperature and small effective plastic strain
the relative deviation is relatively small, while at the regions of
high temperature and large effective plastic strain the relative
deviation is large. This implies that the minimum RVE size is
dependent on both temperature and plastic deformation. In
Fig. 10. Homogenized isotropic hardening as function of effective pla
addition, the deviation contours are dense at the high temperature
region. This reflects that the computation accuracy of average iso-
tropic hardening function is strongly affected by the temperature
at high temperature (e.g. >350 �C). As shown in Fig. 11(a)–(c), the
average relative deviation varies obviously when increasing d from
5 to 20. For RM with d = 20, at the temperature region [0, 500] �C
versus the effective plastic strain region [0, 40] � 10�4, the relative
deviation of the average isotropic hardening function is smaller
than 5% (Fig. 11(d)). These results suggest that if the required devi-
ation tolerance is smaller than 5%, the RVE size ratio d should be
larger than 20.

Gitman et al. [37] indicated that the RVE sizes are dependent on
both the values of the material parameters and the types of mate-
rial behavior considered. The minimum RVE size may not be deter-
mined in strain-softening materials where local deformation
stic strain and temperature for different microstructure models.



Fig. 11. Contours of relative deviation in average isotropic hardening function for different microstructure models.
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presents [37]. For strain-hardening materials like the 2124Al
matrix which is used in the present study experiencing small
deformation, although plastic deformation is heterogeneous in
the 2124Al matrix (as shown in Fig. 12), almost all the 2124Al
matrix experience plastic deformation and no localization defor-
mation is observed. So it is possible to obtain the minimum RVE
size of the SiC/2124Al composite for small elasto-plastic deforma-
tion. In the present work, the number of mesh nodes of RM with
d = 20 is N = 783,876 and the finite element equation system is
rank of 2,351,628, which is a quite large scale problem. If strict
deviation tolerance is used, the resulted problem will be larger
and can only be solved on a supercomputer or computer cluster.
Considering both computation cost and accuracy, the 5% deviation
tolerance can be adopted and the minimum RVE size can be
selected as d = 20. This is in the range of the reported value.
Fig. 12. Accumulated plastic deformation field in 2124Al of RM with d = 5 where
SiC particles are not visible. The value of h in Eq. (32) for establishing the boundary
condition is 0.025.
Ostoja-Starzewski et al. [4] showed that the minimum RVE size
is 32 for estimating the elasto-platic properties based on a 2D ide-
alized random microstructure where circular particles are ran-
domly distributed in a square.

In addition, Fig. 11(a) also shows that the UCM introduces larger
deviation to the average isotropic hardening function compared to
the average CTE or average elastic properties.

5. Conclusions

UCM and RM with different domain sizes are comparatively
studied for determining the minimum RVE size. The following con-
clusions can be reached:

1. Compared to RM, UCM underestimates the average CTE and
Poisson’s ratio, while it overestimates the average Young’s mod-
ulus and isotropic hardening function.

2. Based on RM, the minimum RVE sizes for determining the aver-
age CTE, Young’s modulus and Poisson’ ratio are d = 15, d = 20
and d = 20, respectively.

3. In thermo-elastoplastic deformation, the minimum RVE size for
estimating the average isotropic hardening function depends on
both the temperature and the plastic deformation. With the
same deviation tolerance, the minimum RVE size in thermo-
elastoplastic deformation is larger than that in thermo-elastic
deformation. By applying 5% deviation tolerance, RM with
d = 20 can be employed as the minimum RVE at the tempera-
ture region [0, 500] �C versus the effective plastic strain region
[0, 40] � 10�4.
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