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Pure Ni was successfully friction stir processed (FSP) using a common heat-treated steel tool under addi-
tional water cooling. The FSP Ni exhibited a multi-modal grain size distribution, with some relatively
coarse grains of about 3–5 lm distributed in the ultra-fine grained (UFG) matrix. Sound tensile properties
with a high yield strength of �500 MPa and a large uniform elongation of �12% were achieved in the UFG
FSP Ni, attributable to the enhanced strain hardening capacity. This study describes an effective low-cost
method of processing high melting point metals, and also provides a methodology to produce UFG pure
Ni by FSP.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Since the invention, friction stir welding and processing (FSW/
P) have been widely applied, especially in aerospace and automo-
tive areas [1,2]. Initially, FSW/P were applied primarily to alumi-
num alloys, which can be easily welded and processed due to
their low melting temperature and sound plastic deformation abil-
ity [1–4]. Other metals with relatively low melting points, such as
copper and magnesium alloys, have been also subjected to wide
FSW/P investigations [1,2,5,6]. By contrast, it was difficult to con-
duct FSW/P on ferrous metals and other high melting point metals,
which was limited by the development of the welding tools [7–12].

During FSW/P, most of the heat generates from the severe fric-
tion between the rotation tool and the workpiece, and the maxi-
mum temperature in the stirred zone (SZ) is usually between
0.6Tm and 0.9Tm, where Tm is the workpiece’s melting point
[1,13,14]. Therefore, during FSW/P of high melting point metals,
tools that are strong and durable at higher temperatures (usually
higher than 1000 �C) are necessary to guarantee the successful
welding and processing. In this case, polycrystalline cubic boron
nitride (PCBN) and tungsten-based alloys are usually chosen as
the tool materials [7–12,15–18]. However, there are some obvious
drawbacks for these tools, such as the high cost, the tool oxidation,
abrasion and reaction with the workpiece at higher temperatures
[7–12].

To date, there are still no appropriate tool materials that can
stand up to meet the requirement of FSW/P of high melting point
metals well [7,11,12]. If the process temperature is reduced greatly
during FSW/P of high melting point metals, there will be more
choices for the tool materials. At lower welding/processing
temperatures, tool abrasion and reaction with the workpiece
would be significantly inhibited, and no Ar shielding gas is needed.
More importantly, the common tool materials with low cost may
be suitable in this case.

Previous studies have proved that employing additional cooling
is an effective method of reducing the process temperature during
FSW/P [19–26]. Via additional cooling, mechanical properties of
the FSW joints could be obviously enhanced and an ultra-fine
grained (UFG) structure was successfully achieved in the SZ after
FSW/P. The FSP UFG structure is usually characterized by equiaxed
recrystallized grains with a large fraction of high angle grain
boundaries (HAGBs, misorientation angle P15�) and low density
of dislocations [20–26]. This is quite different from most severe
plastically deformed (SPD) UFG microstructures originating from
the dislocation related mechanisms [27,28], and special mechani-
cal properties can be achieved in FSP UFG materials
[25,26,29,30]. UFG structure has been successfully achieved by
FSP in Al, Mg and Cu alloys [20–26]; however, there are no related
studies on FSP UFG high melting point metals till now. So it is
worthwhile to investigate the possibility for obtaining UFG high
melting point metals with good mechanical properties by FSP.

In this study, a typical high melting point metal – pure Ni was
subjected to FSP using a tool made of common heat-treated tool
steel under additional rapid cooling. The aim is to (a) investigate
the availability of the common tool materials for FSW/P of high
melting point metals under additional cooling and (b) understand
the relationship between the microstructure and mechanical prop-
erties of the FSP UFG Ni.

2. Experimental procedures

Commercially pure Ni (99.98%) plate, 4 mm in thickness,
150 mm in length and 80 mm in width was used in this study,
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and the rotation tool was made of common heat-treated tool steel
(M42). For the FSP process, the pure Ni plate was first fixed under-
water prior to FSP, and then the water was allowed to flow during
FSP. Thus, rapid cooling of the FSP sample was achieved by the
flowing water. FSP was performed at a rotation rate of 400 rpm
and a traverse speed of 50 mm/min, using a tool with a shoulder
10 mm in diameter and a cylindrical threaded pin 4 mm in diame-
ter and 1.8 mm in length. For comparison, a routine FSP process
was also performed in air with the same FSP parameter.

Microstructural observations were conducted by optical
microscopy (OM), electron backscatter diffraction (EBSD), trans-
mission electron microscopy (TEM, FEI Tecnai G2 20) and scanning
electron microscopy (SEM), complemented by energy-dispersive
spectroscopy (EDS). EBSD scans were performed using an Oxford
HKL Channel 5 system on a LEO Supra 35 FEG SEM with a step size
of 100 nm.

The dog-bone-shaped tensile specimens with a gauge length of
5 mm, a width of 1.2 mm and a thickness of 0.6 mm were ma-
chined along the FSP direction from the SZ. Uniaxial tensile tests
were conducted at an initial strain rate of 1 � 10�3 s�1. The fracture
surface was examined using SEM.

3. Results and discussion

Under additional water cooling in the present study, defect-free
pure Ni was successfully processed by FSP using the steel tool, and
Fig. 1. (a) Surface macrograph and (b) cross-sectional macrostructure of FSP Ni
sample prepared under additional water cooling.

Fig. 2. Microstructure of FSP Ni: (a) EBSD image, HAGBs and LAGBs are represented
distribution, and (c) pole figures.
no obvious tool abrasion was observed. Furthermore, no other ele-
ments besides Ni element were detected in the SZ according to the
EDS results, indicating that the steel tool performed well in this
case. However, when the FSP process was performed in air, the tool
failed quickly after the shoulder touched the workpiece due to the
greatly increased temperature. Fig. 1 shows the typical surface
macrograph and the cross-sectional macrostructure of the FSP Ni
sample prepared under additional water cooling. It is clear that
sound processing surface was achieved and no defect was detected.

Obviously, additional cooling is an effective method of process-
ing the high melting point metals, and this should be attributed to
the greatly reduced process temperature. Most of the heat gener-
ated in the SZ was carried away by flowing water. Thus, the heat
could not be accumulated during FSP, and therefore the process
temperature was reduced greatly. In principle, FSW/P can be com-
pleted successfully using the steel tools and other low-cost tools at
a lower processing temperature so long as the plastic flow of the
materials runs well in the SZ. Fortunately, most metals, in particu-
lar the cubic system pure metals and alloys possess sound plastic
deformation abilities even at a lower temperature. Therefore, this
study provides an effective low-cost methodology to conduct
FSW/P of high melting point metals.

From the EBSD image shown in Fig. 2a, the FSP Ni was charac-
terized by an equiaxed recrystallized microstructure. However, the
grain size exhibited a multi-modal distribution, with some rela-
tively coarse grains of about 3–5 lm distributed in the UFG matrix.
In the dynamic recrystallization (DRX) process during FSP, prefer-
ential grain growth might occur at the appropriate strain state,
temperature, and misorientation, resulting in the wide grain size
distribution [31]. This is different from the multi-modal UFG Ni
prepared by cryomilling and quasi-isostatic (QI) forging processes,
which originated from the nonuniformities of the cryomilled pow-
ders [32].

The distribution of the grain boundary misorientation angles of
the FSP Ni is shown in Fig. 2b. Compared to the random distribu-
tion for a cubic polycrystal, the fraction of the low angle grain
boundaries (LAGBs, misorientation angle <15�) in the FSP Ni was
by black and white lines, respectively, (b) grain boundary misorientation angle



Fig. 5. SEM micrograph of the fracture surface of FSP Ni.
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higher. This should be attributed to the ultra-fine subgrain struc-
tures in the FSP Ni, as shown by white lines in Fig. 2a. Considering
all grain boundaries with misorientation angles >2�, the HAGBs, in
the FSP Ni comprised �80% of the total grain boundary length, and
this fraction was obviously larger than that in other SPD UFG mate-
rials [28,33].

Furthermore, it was revealed that the FSP Ni exhibited a weak
texture component as indicated by the pole figures in Fig. 2c. This
weak texture component was close to rotated cube orientation
{001} h110i, or so-called shear component, which came from
the remnant of shear texture. The shear component was usually
formed with inhomogeneous shear deformation due to the FSP.
This result was similar to that of FSP Cu and Al alloys where very
weak or random texture was found [34,35].

TEM examinations showed that the FSP Ni exhibited equiaxed
UFG structure with a grain size of several hundred nanometers
(Fig. 3). Besides the sharp, clear, and relatively straight boundaries
which were identified as HAGBs, some wavy and ill-defined LAGBs
were also observed, which was in accord with the EBSD result
shown in Fig. 2a. This indicates that continuous DRX (CDRX) should
happen in the FSP process, but the growth of the recrystallized
grains was limited due to the rapid water cooling. Therefore, many
dislocation structures or subgrain boundaries were preserved as
shown in Figs. 2a and 3.

The tensile engineering stress–strain curves of the FSP Ni, as
well as the coarse grained (CG) Ni reference material, are compared
in Fig. 4. The CG Ni exhibited a low yield strength (YS) of about
100 MPa. It is apparent that the FSP Ni showed a high YS of about
500 MPa, which was higher than that of the multi-modal UFG Ni
prepared by cryomilling and QI forging [32]. More importantly,
the FSP Ni exhibited a considerable uniform elongation of �12%,
suggesting that the fast plastic instability observed in most UFG
materials [27,28] was restrained in the FSP Ni.
Fig. 3. Typical TEM bright-field image showing ultrafine grains in FSP Ni.

Fig. 4. Tensile engineering stress–strain curves of FSP Ni and CG Ni samples.
Fig. 5 shows the SEM micrograph of the fracture surface of the
FSP Ni after the tensile test. The FSP Ni fractured with a ductile fea-
ture dominated by microvoid formation on a much finer scale. The
refined grain/dislocation structures reduced the size of the nucleat-
ing flaws and increased the resistance to crack propagation, lead-
ing to a higher fracture stress.

The high ductility of the FSP Ni should be mainly attributed to
the multi-modal grain size distribution. UFGs tend to lose the strain
hardening quickly on deformation owing to their very low disloca-
tion storage efficiency inside the tiny grains [27,28]. Such a high-
strength material is therefore prone to plastic instability, severely
limiting the desirable ductility. Previous studies indicated that mul-
ti-modal or bi-modal grain size distribution in UFG materials was
beneficial to increasing the strain hardening capacity because the
dislocation can be accumulated in the coarse grains [32,36]. In the
present FSP Ni, a certain number of coarse grains existing in the
UFG matrix, undoubtedly, would store dislocations effectively dur-
ing tension, thereby enhancing strain hardening capacity.

Compared to other SPD UFG materials [28,33], one significant
characteristic of the present FSP Ni is the large fraction of HAGBs
(Fig. 2b). Though the mechanism for increasing strain hardening
through the HAGBs is not fully understood, some studies showed
that high fraction of HAGBs are beneficial to the strain hardening
[32,37]. One possibility is that HAGBs are more effective in blocking
slipping dislocations, thereby forcing the dislocations to tangle and
accumulate near the boundaries. Another possible mechanism is by
the occurrence of grain boundary sliding since sliding has been ob-
served experimentally in UFG Al [38,39]. HAGB sliding leads to dis-
location emissions at the triple junctions owing to the presence of
high stress concentrations and these dislocations may act to in-
crease the strain hardening. Anyhow, more dislocations can be
accumulated in the special microstructures of the present FSP Ni,
and enhanced strain hardening capacity was obtained, leading to
the good combination of high strength and ductility.

From the above results, it is clear that high melting point pure
Ni can be successfully friction stir processed using the tool made
of common tool steel under additional water cooling. UFG Ni with
a multi-modal structure was achieved and exhibited sound
mechanical properties due to the special microstructure. This
study describes an effective low-cost method of processing high
melting point metals, and also provides a methodology to produce
UFG pure Ni by FSP.

4. Conclusions

According to the above results and discussions, the following
conclusions are reached:
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(1) Commercially pure Ni was successfully friction stir pro-
cessed using the tool made of common tool steel under addi-
tional water cooling. The FSP Ni exhibited sound processing
surface and no obvious tool abrasion was observed.

(2) Defect-free UFG Ni was achieved in the SZ, which consisted
of equiaxed recrystallized grains with a multi-modal grain
size distribution, with some relatively coarse grains of about
3–5 lm distributed in the UFG matrix several hundred
nanometers in grain size. The high fraction of the HAGBs
of �80% and a weak shear texture component were achieved
in the FSP UFG Ni.

(3) The FSP UFG Ni exhibited a good combination of strength
and ductility, which showed a large uniform elongation of
�12% and a high YS of about 500 MPa. The sound tensile
properties of the FSP Ni were attributed to the enhanced
strain hardening in the special microstructure, where the
dislocations could be accumulated effectively.
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