焊前热处理状态对SiC_p/Al-Cu-Mg复合材料搅拌摩擦 焊接头微观组织和力学性能的影响^{*}

王东1.2) 王全兆2) 肖伯律2) 倪丁瑞2) 马宗义2)

1)中国科学技术大学化学与材料科学学院,合肥 230026
 2)中国科学院金属研究所沈阳材料科学国家(联合)实验室,沈阳 110016

摘要 在工具转速800 r/min,焊接速度100 mm/min的工艺参数下,对6 mm厚的15%SiC_p/2009A1(体积分数)板材在软态 (固溶态)和硬态(自然时效态)下进行搅拌摩擦焊接,均获得致密无缺陷的接头.结果表明,样品原始状态对焊核区的晶粒尺 寸、析出相(Al₂Cu)分布和硬度均影响不大.2种样品的热影响区均存在2个低硬度区.靠近焊核区的低硬度区在焊接热循环 过程中温度较高,2种样品均发生Al₂Cu相的粗化,硬度值相同;但在远离焊核区的低硬度区,固溶态样品不发生固溶原子团 簇回溶,该区域的硬度略高于自然时效态样品,并且位置更靠近焊核中心.2种接头横向拉伸时均断裂在靠近焊核的低硬度 区,强度基本相同,可达母材强度的83%.这表明,固溶软态下进行15%SiC_p/2009A1板材的搅拌摩擦焊接,可以取得常规时 效硬态下焊接的效果,有助于扩大焊接工艺窗口,减少焊接工具磨损.

关键词 铝基复合材料,搅拌摩擦焊,微观组织,析出相,力学性能

中图法分类号 TG146.2 文献标识码 A

文章编号 0412-1961(2014)04-0489-09

EFFECT OF HEAT TREATMENT BEFORE WELDING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FRICTION STIR WELDED SiC_p/Al-Cu-Mg COMPOSITE JOINTS

WANG Dong ^{1,2)}, WANG Quanzhao ²⁾, XIAO Bolü ²⁾, NI Dingrui ²⁾, MA Zongyi ²⁾

1) School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026

 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016

Correspondent: MA Zongyi, professor, Tel: (024)83978908, E-mail: zyma@imr.ac.cn Supported by National Basic Research Program of China (No.2012CB619600) Manuscript received 2013–11–11, in revised form 2014–01–07

ABSTRACT Discontinuously reinforced aluminum matrix composites (AMCs) have been widely applied in structures of aerospace industry. Wide industrial applications of AMCs depend on effective joining methods, which are dependent on the use of a specific material and process. As a new solid-state welding technique, friction stir welding (FSW) has been attempted for joining the AMCs in last few years. However, few attentions have been paid to the effect of initial heat treatment tempers of the AMCs on the FSW joints. In this work, 6 mm thick SiC_p/ 2009Al composite plates in both soft (solution temper) and hard (natural aging temper) conditions were successfully friction stir welded at a rotation rate of 800 r/min and a welding speed of 100 mm/min (named as Sol-FSW and T4-FSW samples). In the nugget zone (NZ) of both samples, the grain size and the distribution of the coarse Al₂Cu

^{*}国家重点基础研究发展计划资助项目2012CB619600

收到初稿日期: 2013-11-11, 收到修改稿日期: 2014-01-07

作者简介:王东,男,1980年生,博士生

DOI: 10.3724/SP.J.1037.2013.00719

phases were similar. In the heat affected zone, two low hardness zones (LHZs) were observed. LHZ I adjacent to the NZ had the lowest hardness. Both samples had the similar hardness in this zone. For the Sol-FSW sample, LHZ II far away from the NZ had a higher hardness and was closer to the NZ compared to that of the T4-FSW sample. The ultimate tensile strength of both the samples was similar and reached 83% of T4-tempered base metal. Both samples failed in LHZ I adjacent to the NZ due to the lowest hardness in this zone. This indicates that for the SiC_p/ 2009Al composite under solution temper it is possible to produce similar joints to that under natural aging temper using FSW technique. FSW of the composites under soft condition is beneficial to enlarging the welding process window and reducing the tool wear.

KEY WORDS aluminum matrix composite, friction stir welding, microstructure, precipitate, mechanical

property

金属基复合材料不仅具有轻质、高强的特点, 还具有良好的抗疲劳、抗蠕变、耐热、耐磨、高热导、 低热膨胀、减振及尺寸稳定等一系列优点,成为国 民经济发展和国防建设领域的重要结构材料^{III}.不 连续增强铝基复合材料(AMC)因其基体质量轻、制 造工艺简单,且可用常规金属加工方法如铸造、挤 压、轧制等制造各种形状的型材和零件,因而适于 工业化批量生产,成为目前价格最便宜、应用最广 的一种金属基复合材料^{II-4}.

由于陶瓷增强相与基体合金性能的巨大差异, 给AMC的焊接带来了很大困难^[5],这限制了AMC 构件的设计,成为其应用的严重障碍.采用常规熔 化焊工艺焊接AMC时,增强相与基体发生剧烈反 应,形成有害的脆性相,并使焊缝区产生增强相偏 聚、气孔等缺陷.搅拌摩擦焊(FSW)作为一种新型固 态焊接技术,可以有效地避免AMC熔化焊接产生 的缺陷,接头性能可达母材的70%~87%,成为近年 来AMC焊接研究的热点^[6-15].

对于基体为可热处理强化铝合金的AMC进 行FSW时,与铝合金类似,复合材料通常处于时 效态16~10],此时 AMC 的强度较高,塑性较差,使得 AMC的FSW参数选择限制在一个较窄的范围内. 同时由于AMC处于较硬的状态,增强相颗粒对工 具的磨损更为严重,也限制了FSW参数的选择^[11]. 因此,研究者^[12,13]选择耐磨材料制备FSW工具以拓 展AMC的FSW参数.同时,针对可热处理强化 AMC的特点,选择处于较软的热处理状态进行 FSW, 也是扩大焊接工艺窗口、减轻工具磨损的重 要途径之一[14.15]. Feng等[15]采用FSW技术焊接挤压 态的SiC。/2009Al,减轻了工具磨损.但挤压态材料 强度较低,需要在焊后重新进行固溶、时效处理. 焊后进行固溶和淬火处理会导致工件变形,对于 大尺寸/复杂结构的工件,无法保证热处理后的尺 寸精度.

除热加工状态外,固溶态也是可热处理强化铝

合金和AMC的软状态,此时只有固溶强化而没有 沉淀强化,因而材料的硬度也较低,有较好的塑性 流变性能,与热加工态一样也有利于实现FSW.但 与热加工态不同的是,固溶态AMC的合金元素均 固溶在基体中,母材区和焊缝各微区在FSW过程中 经历不同的热循环或热机械循环,固溶原子的析出/ 溶解行为可能有很大的不同.如果通过控制FSW参 数使焊缝区的微观组织与力学性能与常规焊接工 序取得的效果相当,经焊后常规时效处理可以达到 正常硬化状态,那么就可以取得软态焊接,不需焊 后固溶处理就能得到高强度复合材料焊接接头的 效果.然而到目前为止,尚没有在固溶态下进行可 热处理强化AMC的FSW的研究报道.

Al-Cu-Mg系合金具有强烈的自然时效倾向,因 而固溶原子对热循环非常敏感,可作为固溶态下进 行 AMC 的 FSW 研究的理想模型基体材料,因而本 工作选取目前应用最广泛的 SiC_p/2009Al 复合材料 作为研究对象,分别在自然时效态(硬态)和固溶态 (软态)下对 15% SiC_p/2009Al (体积分数,下同)板材 进行 FSW,通过探讨焊前热处理状态对接头微观组 织和力学性能的影响,以期建立固溶+FSW+自然时 效这样一个实现 AMC 高性能连接的工艺.

1 实验方法

采用6mm厚的15%SiC_p/2009Al复合材料板材 作为原材料.复合材料采用粉末冶金法制备,将颗 粒尺寸为50µm的2009Al粉末以及7µm的SiC粉 末混合均匀,在580℃热压.制得的坯锭在480℃ 热轧至6mm,然后将板材切割成6mm×80mm× 300mm小块进行热处理,获得不同状态的板材后进 行FSW,焊接转速800r/min,焊接速度100mm/min. 板材的热处理工艺和焊接工序如表1所示.采用金 属陶瓷焊接工具,本课题组之前的报道¹¹⁴¹表明,该工 具在焊接时基本不发生磨损,可以避免工具磨损对 接头组织和性能的影响.轴肩直径为20mm,搅拌针

= 1	150/010 /0000 11	右 人 How For H	
夜上	15%51C/2009AI	复合树科FSW B	z 天 及 耳 州 的 恐 处 理 扒 於
		24 14 14 11 12 13	

Table 1 Heat treatment temper of friction stir welding (FSW) 15% SiC _p /2009Al joints and base material (BM)					
Sample	Heat treatment and welding processing				
BM	Solutionized at 516 $^\circ C$ for 1 h, water quenching, naturally aged for 7 d				
Sol-FSW	Solutionized at 516 $^\circ \!\!\!\!C$ for 1 h, quenching, welded, naturally aged for 7 d				
T4-FSW	BM sample welded, naturally aged for 7 d				
T4-FSW-T4	T4-FSW sample re-solutionized at 516 $^\circ\!\!\mathrm{C}$ for 1 h, water quenching, naturally aged for 7 d				

为三棱柱形,根部直径为8mm,针长为5.8mm.

所有的FSW样品在室温放置7d,在各区域达 到稳定的自然时效状态后进行微观结构分析和性 能测试.采用MEF4A光学金相显微镜(OM),Quanta 600扫描电镜(SEM)及Tecnai G²20透射电镜(TEM) 进行微观组织观察.金相样品的腐蚀剂为Keller试 剂(2.5%HNO₃+1.5%HCl+1%HF,体积分数).TEM 样品砂纸研磨后,采用离子减薄制备.物相分析采 用 D/Max 2500PC X 射线衍射仪(XRD),工作电压 50 kV,电流250 mA.

硬度测试在 MVK-H300 型显微硬度计上进行, 在样品横截面上沿板厚中心每间隔1 mm 打1 点,测 试时所用载荷 500 g,保压时间 15 s.垂直焊接方向 截取拉伸样品,焊缝位于中心,标距段长度 40 mm, 采用 AG-100KNG 拉伸机进行拉伸实验,初始应变 速率为1×10⁻³ s⁻¹.

2 实验结果

2.1 接头力学性能

图 1为T4-FSW, Sol-FSW 和T4-FSW-T4样品 的硬度曲线. 与 2024Al 的 FSW 接头类似^{116]}, T4-FSW样品的硬度曲线表现为双W型,在前进侧和 后退侧的热影响区,均存在2个低硬度区,距焊核 中心约8mm处为第1个低硬度区(LHZ I),具有最 低的硬度值,约为140 HV.随距焊核中心距离增加, 硬度先升高后降低. 距焊核中心约26 mm 处, 出现 第2个低硬度区(LHZ II), 硬度约为160 HV. 焊核区 的硬度约为155 HV, 低于母材(约为170 HV). Sol-FSW样品经相同焊接参数焊接后,接头的硬度分布 与T4-FSW样品类似. LHZ I的位置和硬度值及焊核 区的硬度与T4-FSW样品基本相同,说明焊前固溶 处理对焊核区及LHZI的硬度影响不大.然而与T4-FSW样品相比, Sol-FSW样品的LHZ II 位置更靠近 焊核中心(距焊核中心约23 mm), 硬度值较T4-FSW 样品略有升高(163 HV). 需要指出的是, 在经过焊后 7d放置后, Sol-FSW样品母材区的硬度与T4-FSW 样品基本相当,表明FSW并不对固溶态母材区的后

Fig.1 Hardness of FSW SiC_p/2009Al joints (RS—retreating side, AS—advancing side, LHZ—low hardness zone)

续时效行为产生影响.对于T4-FSW-T4样品,在经过焊后重新T4热处理后,焊缝各个区域的硬度基本相同,约为170 HV,基本恢复到母材的水平.

表2为15%SiC_p/2009Al的FSW接头及母材的 拉伸性能.T4-FSW样品的抗拉强度为444 MPa,可 达母材的83%.由硬度曲线可见(图1),LHZ I硬度最 低,因此拉伸时样品断裂在该区域.另外,由于该区 域硬度较低,拉伸时样品集中在该区域变形,从而 导致接头横向拉伸的延伸率低于母材.由于接头强 度受低硬度区控制,而Sol-FSW样品LHZ I的硬度 与T4-FSW样品基本相同,因此其拉伸性能及断裂 位置均与T4-FSW样品相同.

图2a为母材样品的拉伸断口.断口中AI基体由 大量的韧窝组成,并可观察到大量破碎的SiC颗粒. 由于母材强度较高,拉伸时较高的载荷传递到SiC 颗粒上使得部分SiC颗粒发生断裂.图2b为T4-FSW样品的拉伸断口.由于样品断裂在热影响区, 该区域强度较低,塑性增加,因此与母材相比,断口 韧窝较大,塑性断裂特征更加明显,同时SiC颗粒断 裂的数量相对较少.由于Sol-FSW样品也断裂在热 影响区,同时强度与T4-FSW样品相似,因此其断口 形貌与T4-FSW样品相似(图2c).而对于T4-FSW-T4样品(图2d),由于重新进行了T4处理,样品的强

Table 2 Tensile properties of FSW 15% $SiC_{\nu}/2009A1$ joints and base material							
Sample	YS / MPa	UTS / MPa	EL / %	$UTS_{\text{Joint}}/UTS_{\text{BM}}$	Fracture location		
BM	332	538	12.6	_	_		
Sol-FSW	297	445	5.7	0.83	LHZ I		
T4-FSW	300	444	4.1	0.83	LHZ I		
T4-FSW-T4	323	516	8.6	0.96	LHZ I		

表2 固溶态及自然时效态15% SiC₂/2009A1的FSW 接头及母材的拉伸性能 Table 2 Table by properties of FSW 15% SiC /2000A1 joints and have meterial

Note: YS-yielded strength, UTS-ultimate tensile strength, EL-elongation

图 2 固溶态及自然时效态15%SiC_p/2009Al的FSW接头及母材的拉伸断口 Fig.2 SEM fractographs of base material (a), T4-FSW (b), Sol-FSW (c) and T4-FSW-T4 (d)

度基本恢复到母材的水平,拉伸断口与母材相似.

2.2 接头的微观组织

图3为Sol-FSW样品的宏观形貌,焊核区(NZ)、 热影响区(HAZ)、母材(BM)的位置如图所示,可见接 头无宏观焊接缺陷.T4-FSW样品的宏观形貌与Sol-FSW样品相似,在文中没有给出.

图 4a 为自然时效态 15% SiC_p/2009Al 板材垂直 于轧制方向的金相照片. 可见, Al 基体中晶粒呈等 轴晶分布, 晶粒尺寸约为 10 μm. 固溶态 15% SiC_p/ 2009Al 板材的金相组织与自然时效态相同, 没有在 文中给出. 图 4b 为T4-FSW 样品焊核区的金相组织

图 3 固溶态 15%SiCr/2009Al的FSW 接头宏观形貌 Fig.3 Macrographs of Sol-FSW sample (NZ—nugget zone, HAZ—heat affected zone)

照片. 与母材相似, Al基体也由大量等轴晶组成, 晶 粒尺寸略小于母材, 约为6 µm. 与铝合金的FSW接 头类似, AMC在FSW过程中, 焊核区也会发生动态 再结晶, 但由于SiC颗粒的阻碍作用, Al基体的再结 晶晶粒很难发生明显的长大^[17,18], 因此其晶粒尺寸

图4 固溶态及自然时效态15%SiC_p/2009Al的FSW接头及母材的金相组织 Fig.4 OM images of base material (a), T4-FSW (b), Sol-FSW (c) and T4-FSW-T4 (d)

与母材基本相同. 图4c为Sol-FSW样品焊核区的金 相组织照片. 与T4-FSW样品相似, Al基体也由大量 等轴晶组成,并且晶粒尺寸也约为6μm. 虽然材料 在软态下焊接,但由于SiC颗粒的作用, Al基体的晶 粒尺寸与硬态下焊接相比没有明显变化. 而在T4-FSW-T4样品中(图4d),虽然焊后经过固溶处理,但 与铝合金FSW接头不同的是^[19],由于SiC颗粒的阻 碍作用, Al基体的晶粒并没有发生明显的异常长 大,基体的晶粒尺寸约为8μm,接近焊态及母材的 晶粒尺寸.

图5a为母材的背散射像.在Al基体中存在一些 圆形的白色相.能谱分析结果表明,这些白色相的 成分(原子分数)为88.2%Al,7.84%Cu,1.57%Si, 1.68%Mg,0.73%Fe.母材采用粉末冶金方法制备, 在材料制备过程中会有部分Fe元素混入到基体中, 与Al基体及基体中的Cu元素反应,最终形成 Al₂Cu₂Fe相.而在随后的热轧及冷却过程中,Al₂Cu 相会在Al₂Cu₂Fe相表面形核并长大.当样品进行固 溶处理时,Al₂Cu₂Fe相表面形核并长大.当样品进行固 溶处理时,Al₂Cu₂Fe相表面形核并长大.当样品进行固 溶处理时,Al₂Cu₂Fe相表面形核并长大.当样品进行固 游处理时,Al₂Cu₂Fe相表面形核并长大.当样品进行固 游状白色相.从XRD结果(图6)可知,母材中只有少 量的Al₂Cu相的衍射峰,这与背散射结果相似.由于 基体中Al₂Cu₂Fe相含量较少,因此在XRD结果中并 没有Al₇Cu₂Fe相的衍射峰.图中较小的黑色孔洞,可能是材料中的第二相在抛光过程中脱落导致的.

图 5b为T4-FSW 样品焊核区的背散射像. 较多的白色相分布在Al基体中. 能谱分析结果表明, 不规则的白色相成分(原子分数)为87.7%Al, 7.6%Cu, 2.6%Si, 1.4%Mg, 0.7%Fe. 而圆形的白色相成分为80.0%Al, 24.2%Cu, 3.1%Si, 1.7%Mg. 另外, 还有较多相对细小的白色相分布在基体中, 由于相尺寸较小, 能谱不能标出相的成分. 由T4-FSW 样品焊核区的XRD结果(图6)可知, 基体中只含有Al₂Cu相, 表明焊核区细小的白色相也为Al₂Cu相.

图 5c 为 Sol-FSW 样品焊核区的背散射像. 与 T4-FSW 样品焊核区结果相似,在其焊核区也存在 较多的白色析出相. XRD 结果(图 6)表明,这些白色 相也为 Al₂Cu 相.

图5d为T4-FSW-T4样品焊核区的背散射像. 与 T4-FSW样品焊核区结果不同,大部分的Al₂Cu相溶 解到基体中,仅有少量的圆形白色相分布在基体 中. 能谱结果表明,这些白色相的成分与母材中的 白色相相似,含有Fe元素.XRD结果(图6)与母材相 似,在基体中仅有少量的Al₂Cu相.T4-FSW-T4样品 与母材相似,在固溶过程中大部分的Al₂Cu相溶解 到基体中,仅有少量的Al₂Cu相残留在Al₇Cu₂Fe相 周围.

图7a为母材的TEM像.可见,母材中存在大量

图 5 固溶态及自然时效态 15% SiC_p/2009Al的FSW 接头及母材的背散射电子像 Fig.5 Backscattered electron images of base material (a), T4-FSW (b), Sol-FSW (c) and T4-FSW-T4 (d)

图 6 固溶态及自然时效态 15% SiC_P/2009Al 的 FSW 接头 及母材的 XRD 谱

位错. 在淬火过程中, SiC与Al基体之间线膨胀系数 不同,导致基体中产生大量位错. 同时由于板材内 外冷却速度不同,也会促进位错的生成. 在母材中 除了较多的位错外,没有明显的析出相.

图7b为T4-FSW样品焊核区的TEM像. 在焊核 区存在较多的粗大相, 尺寸约为200 nm. 能谱分析 表明粗大相的元素含量为72.0% Al和28.0% Cu (原子分数),表明这些粗大相为 Al₂Cu 的平衡相.在T4-FSW 样品的焊核区,除了 SEM 像(图 5b)显示的粗大的 Al₂Cu 相外,还有较多的 200 nm 左右的 Al₂Cu 相. 图 7c 为 Sol-FSW 样品焊核区的 TEM 像.与T4-FSW 样品相似,焊核区也存在约 200 nm 左右的 Al₂Cu 相. 而将 T4-FSW 样品重新进行 T4 处理,即 T4-FSW-T4 样品(图 7d),其 TEM 像与母材相似,基体中存在较 多的位错,无明显的析出相.

图 8a为T4-FSW 样品靠近焊核区的硬度最低点 LHZ I的低倍组织.在该区域存在较多的粗大析出 相,能谱分析表明这些析出相的成分为68.0% Al和 32.0% Cu (原子分数).图 a 中的插图为箭头所示粗 大析出相的选区电子衍射谱(SAED),表明该析出相 为 Al₂Cu相.在FSW 过程中,T4-FSW 样品的LHZ I 温度高于 Al₂Cu相的粗化温度,导致大量 Al₂Cu相的 粗化.图 8b为 Sol-FSW 样品 LHZ I的 TEM 像,在基 体中也存在较多的粗大析出相, SAED 结果(未列出) 表明,这些析出相为 Al₂Cu相.但与 T4-FSW 样品相 比,析出相尺寸相对较大,数量较少.图 8c为 T4-

Fig.6 XRD spectra of base material (a), T4-FSW (b), Sol-FSW (c) and T4-FSW-T4 (d)

图7 固溶态及自然时效态15%SiC_r/2009Al的FSW接头焊核区及母材的TEM像 Fig.7 TEM images of base material (a), nugget zone of T4-FSW (b), Sol-FSW (c) and T4-FSW-T4 (d)

FSW样品的LHZI沿铝基体<110>方向的放大TEM 像. 在基体中可观察到较多的位错,表明在焊接热循环过程中并不能消除母材中存在的位错. 另外除了粗大的 Al₂Cu 相,并没有发现其它的析出相. 图 8d 为 Sol-FSW 样品的 LHZI沿铝基体<110>方向的放大TEM 像. 与T4-FSW 样品相似,基体中也存在较多位错,另外除了粗大的 Al₂Cu 相,并没有发现其它的析出相.

3 分析讨论

在可热处理强化铝合金及 AMC 的 FSW 过程 中,接头的温度分布是影响接头最终微观组织及力 学性能的关键因素之一. Jariyaboon 等^[20]测量了 2024Al-T351 合金 FSW 时的温度分布,发现靠近焊 核区温度可达 480 ℃. Mahoney 等^[21]在对 7075Al-T651 合金进行 FSW 时,发现靠近焊核的部位温度 可达 420~470 ℃. 另外,由于焊核区材料剧烈的塑性 变形导致其实际温度很难测量,一般认为,其实际 温度略高于测量的温度^[22]. T4-FSW 样品的基体合金 为铝合金,焊接时焊核区的温度应接近或略高于上 述温度.

Al-Cu-Mg 合金作为最重要的可热处理强化铝 合金之一,其析出相的沉淀析出序列一般为:固溶 体→固溶原子团簇→GP区→亚稳相→稳定相^[23].对 于 SiC₂/2009Al 复合材料, 主要析出相为 S 相 (Al_2CuMg) 和 θ 相(Al_2Cu), θ 相的析出及溶解温度较 高^[24]. 由Al-Cu-Mg合金析出序列可知, 材料中析出 相的类型由热处理状态决定,当材料处于自然时 效状态时,主要的强化相应为固溶原子团簇或GP 区^[16,25]. Marceau 等^[25]在模型合金 Al-1.1Cu-xMg (x= 0, 0.2, 0.5, 0.75, 1.0, 1.7, 原子分数, %))中发现, 当合 金处于自然时效态时,固溶原子团簇为合金的主要 强化相. 但对于商业Al-Cu-Mg合金, 添加的合金元 素如Mn, Fe等会促进GP区的析出,使得GP区为主 要强化相^[27].本研究中采用的SiC₆/2009Al中没有添 加其它合金元素,因此当复合材料处于自然时效状 态时,固溶原子团簇应为主要的强化相.另外,本课 题组之前的研究^[12]表明,在相似的SiC₆/2009Al复合 材料的SAED中没有发现GP区,这也间接证明了复 合材料中的主要强化相为固溶原子团簇.

对T4-FSW样品,由于焊核区的温度较高,在焊 接热机械循环过程中,固溶原子团簇重新溶解到基 体中,在焊后的冷却过程中,冷速较慢,部分Al₂Cu 相优先在基体中形核并长大.而粗大的θ相形成会 降低基体中Cu含量,从而抑制S相的形成,所以在 焊核区没有发现S相.而对于Sol-FSW样品,虽然与 T4-FSW样品相比,材料处于较软的状态,但由于采 用的焊接参数与T4-FSW样品相同,焊核区的温度

报

分布与T4-FSW样品接近.另外,Sol-FSW样品本身处于饱和固溶体状态,并不涉及析出相的溶解过程,因此在焊后的冷却过程中,Al₂Cu相的析出与T4-FSW样品相似,其硬度值也相同.

对于热影响区, 在焊接过程中仅经历热循环. Liu 和 Ma^[26]发现, 在 6061Al-T651 合金 FSW 时, 热 影响区的峰值温度可达 360 ℃. 张振^[27]在对 6 mm 厚 2024Al-T351 合金 FSW 时, 发现靠近焊核区的 LHZ I 的峰值温度为 340 ℃, 而远离焊核区的 LHZ II 的峰值温度为 200~220 ℃. 在采用转速为 800 r/min, 焊接速度为 100 mm/min 的焊接参数时, LHZ I 在 235~340 ℃温度区间持续时间为 20 s, LHZ II 在 120~220 ℃温度区间持续时间为 50 s. 而 15%SiC_p/2009Al 的基体合金成分与 2024Al-T351 合 金接近, 导热系数与其相差不大. 另外, 本研究中采 用的焊接工具尺寸与形状、焊接参数等实验条件均 接近文献[27]所采用的条件. 因此, 可以认为在本研 究中, 15%SiC_p/2009Al 的热影响区的温度分布接近 上述结果.

LHZI在焊接热循环过程中温度较高, T4-FSW 样品在此温度下会析出 θ相, 另外, T4-FSW 样品已 经进行过自然时效处理, 在 AI基体中已经存在固溶 原子团簇, θ相易于在已形成的固溶原子团簇上形 核, 形成尺寸较大的 θ相. 同时, 粗大的 θ相形成会 抑制S相的形成,所以在LHZI也没有发现S相.而 Sol-FSW样品的LHZI在相似的热循环过程中,也 会优先析出θ相.但Sol-FSW样品没有进行自然时 效,θ相形核质点相对较少,因此与T4-FSW样品相 比,形成的析出相尺寸相对较大,数量相对较少.虽 然2种样品在LHZI的析出相的尺寸及分布有所差 异,但该区域的硬度值基本相同,这可能是由于析 出相的尺寸均较大,对强度的贡献并不明显,具体 原因还需要更加详细的研究.

LHZ II经历的温度较低,对于自然时效态的Al-Cu-Mg合金及其AMC的FSW接头,一般认为在该区域发生GP区或固溶原子团簇回溶^[28].T4-FSW样品与Al-Cu-Mg合金的FSW接头相似,在LHZ II部分固溶原子团簇溶解,降低该区域的硬度^[12].而Sol-FSW样品处于过饱和固溶体状态,没有固溶原子团簇析出,在样品中仅存在由淬火导致的空位^[29].由于LHZ II经历的温度较低,仅有部分空位发生湮灭,但它仍然降低了随后自然时效过程中固溶原子团簇的析出速度,从而降低该区域的硬度.由于空位的湮灭温度要高于固溶原子团簇的回溶温度,因此Sol-FSW样品的LHZ II与T4-FSW样品相比,位置更加靠近焊核区(图1).研究^[25,29]表明,在2000系列铝合金中,空位能显著促进S相的GP区或固溶原子

团簇析出, 而 θ相的 GP 区或固溶原子团簇的析出受 空位影响较小. 在 SiC_p/2009Al 中, 主要的析出相为 S 相和 θ相, 在自然时效时 2 种析出相的固溶原子团 簇共同析出. 而在 Sol-FSW 样品的 LHZ II, 自然时 效是在焊后进行的, 部分空位回溶仅对 S 相的 GP 区 或固溶原子团簇析出有影响, 而对 θ相的 GP 区或固 溶原子团簇的析出影响不大. 因此该区域的硬度值 略高于 T4-FSW 样品 LHZ II 的硬度值, 并且低硬度 区范围较窄.

由以上分析可知, Sol-FSW 样品与T4-FSW 样品相比,虽然材料原始状态有所不同,但在较大的焊接热输入下,焊核区的微观组织基本相同.虽然受样品原始状态的影响,热影响区的低硬度区的微观组织有所差异,但在较大的焊接热输入下,决定接头横向拉伸性能的最低硬度区LHZI的硬度值基本相同,这使得在固溶态下进行15%SiC,/2009AI板材的FSW,可取得与常规时效态下焊接相似的效果.需要指出的是,在固溶态下的材料硬度较低,有较好的塑性流变性能,这有助于扩大焊接工艺窗口,减少焊接工具磨损.进一步的研究在后续的工作中会做详细的探讨.

4 结论

(1) 在工具转速800 r/min,焊接速度100 mm/ min的工艺参数下,对6 mm厚的固溶态(软态)和自 然时效态(硬态)的15%SiC_p/2009Al板材进行搅拌摩 擦焊接,均可得到无宏观焊接缺陷的接头.

(2) 2 种状态的 15% SiC_v/2009Al 搅拌摩擦焊接 头焊核区的晶粒尺寸基本相同, 并且均发生 Al₂Cu 相的粗化.

(3) 2 种状态的 15% SiC_p/2009Al 搅拌摩擦焊接 头热影响区均存在 2 个低硬度区. 靠近焊核区的低 硬度区(LHZ I)的硬度值最低, 远离焊核区的低硬度 区(LHZ II)的硬度值略高. 2 种样品 LHZ I 的硬度值 相同, 但固溶态样品 LHZ II 的硬度略高于自然时效 态样品.

(4) 固溶态焊接的接头经自然时效处理后, 拉伸 强度与自然时效态焊接的结果相同, 可达母材强度 的83%. 接头横向拉伸时均断裂在热影响区中靠近 焊核区的低硬度区.

参考文献

[1] Lloyd D J. Int Mater Rev, 1994; 39: 1

- [2] Tjong S C, Ma Z Y. Mater Sci Eng, 2000; R29: 49
- [3] Xu S J, Xiao B L, Liu Z Y, Wang W G, Ma Z Y. Acta Metall Sin, 2012; 48: 882

(许世娇,肖伯律,刘振宇,王文广,马宗义.金属学报,2012;48: 882)

[4] Zhang Q, Wang Q Z, Xiao B L, Ma Z Y. Acta Metall Sin, 2012; 48: 135

(张琪, 王全兆, 肖伯律, 马宗义. 金属学报, 2012; 48: 135)

- [5] Ellis M B D. Int Mater Rev, 1996; 41: 41
- [6] Ni D R, Chen D L, Xiao B L, Wang D, Ma Z Y. Mater Des, 2013; 55: 64
- [7] Wang D, Xiao B L, Wang Q Z, Ma Z Y. J Mater Sci Technol, 2014; 30: 54
- [8] Srivatsan T S, Meslet A H, Petraroli M, Hotton B, Lam P C. Mater Sci Eng, 2002; A325: 202
- [9] Shindo D J, Rivera A R, Murr L E. J Mater Sci, 2002; 37: 4999
- [10] Liu H J, Fenga J C, Fujiib H, Nogi K. Int J Mach Tool Manuf, 2005; 45: 1635
- [11] Prado R A, Murr L E, Shindo D J, Sota K F. Scr Mater, 2001; 45: 75
- [12] Wang D, Wang Q Z, Xiao B L, Ma Z Y. Mater Sci Eng, 2014; A589: 271
- [13] Marzoli L M, Strombeck A V, Dos Santos J F, Gambaro C, Volpone L M. Compos Sci Technol, 2006; 66: 363
- [14] Wang D, Xiao B L, Wang Q Z, Ma Z Y. Mater Des, 2007; 28: 1440
- [15] Feng A H, Xiao B L, Ma Z Y. Compos Sci Technol, 2008; 68: 2141
- [16] Genevois C, Deschamps A, Denquin A, Cottignies B D. Acta Mater, 2005; 538: 2447
- [17] McNelley T R, Swaminathan S, Su J Q. Scr Mater, 2008; 58: 349
- [18] Inem B. Mater Sci Eng, 1995; A197: 91
- [19] Charit I, Mishra R S. Scr Mater, 2008; 58: 367
- [20] Jariyaboon M, Davenport A J, Ambat R, Connolly B J, Williams S W, Price D A. Corros Sci, 2007; 49: 877
- [21] Mahoney M W, Rhodes C G, Flintoff J G, Spurling R A, Bingel W H. Metall Mater Trans, 1998; 29A: 1955
- [22] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
- [23] Wang S C, Starink M J. Int Mater Rev, 2005; 50: 193
- [24] Rodrigo P, Poza P, Utrilla V, Urena A. J Alloys Compd, 2009; 479: 451
- [25] Marceau R K W, Sha G, Lumley R N, Ringer S P. Acta Mater, 2010; 58: 1795
- [26] Liu F C, Ma Z Y. Metall Mater Trans, 2005; 36A: 2378
- [27] Zhang Z. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2012
 (张振.中国科学院金属研究所博士学位论文, 沈阳, 2012)
- [28] Jones M J, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver J H. Scr Mater, 2005; 52: 693
- [29] Homma T, Moody M P, Saxey D W, Ringer S P. Metall Mater Trans, 2012; 43A: 2192