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A 3D multiscale method is proposed to model the residual stresses in multiphase materials under the
hybrid-semiconcurrent multiscale framework. As an illustration, the quenching residual stresses in SiCp/
2124Al composite are modeled. The total residual stresses are separated into the macro, elastic misfit and
thermal misfit residual stresses by means of the present multiscale model. In this multiscale model, one
macroscale model is connected to two microscale models via scale transition boundary conditions. The
predicted total residual strains in the metal matrix and the reinforcing particles coincide with reported
experimental data very well. The predicted total, macro, elastic misfit and thermal misfit residual stresses
agree reasonably well with the reported experimental ones. The present model provides a new tool to
gain a deep insight into the residual stresses in multiphase materials.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their outstanding properties, metal matrix composites
(MMC) are widely used in advanced industries. Nonetheless, the
residual stresses in MMC influence their mechanical behavior sig-
nificantly [1–6]. To guarantee high-performance, reliability and
safety, the distribution and magnitude of residual stress should
be controlled. The corresponding initial and crucial step is to obtain
an accurate knowledge of the residual stresses. Unfortunately, both
the measurement and prediction of residual stresses are historical-
ly difficult [7].

Residual stresses in MMC include the macro, elastic misfit and
thermal misfit residual stresses, and are usually measured by
means of the neutron or synchrotron X-ray diffraction. Different
parts of the measured total residual stresses in each phase of
MMC can be separated via the method proposed by Fitzpatrick
et al. [8]. However, accurate measurement of the triaxial residual
strains via the diffraction techniques encounters the problem that
it is quite difficult to precisely measure the ‘‘stress free’’ lattice
parameters d0 [8–10]. Other factors which influence the accuracy
of measurement include the gauge volume effect [11], the grain
size effect (involved in thermal neutron source method) [12] and
the texture effect [12].
In order to investigate and control the residual stresses in MMC
efficiently, advanced modeling and simulation methods are neces-
sary. In the past two decades, much research has only focused on
modeling the thermal misfit residual stresses via finite element
method, for instance, see the works of Povirk et al. [13], Ho and Sai-
gal [14], and Schmauder et al. [15]. These studies have shown that
tensile thermal misfit residual stress remains in the metal matrix
and compressive thermal misfit residual stress remains in the rein-
forcing particles. In addition, the influences of particle content,
shape and arrangement on the thermal misfit residual stress was
demonstrated by Bouafia et al. [16]. The influences of thermal mis-
fit residual stress on the mechanical properties, such as the yield
behavior [17] and damage mechanism [15] were also assessed.
However, few studies have compared the predicted thermal misfit
residual stress with the measured one. Furthermore, one important
and fundamental issue in modeling the residual stresses in MMC is
that there is still a lack of an efficient numerical algorithm to pre-
dict and further separate the macro, elastic misfit and thermal mis-
fit residual stresses in MMC.

In recent years, much research has focused on development of
multiscale modeling techniques of MMC [18]. For example, Ghosh
et al. [19,20] used multiscale method by combining the asymptotic
homogenization method with the Voronoi cell finite element
method to investigate the elasto-plastic deformation and damage
behaviors of heterogeneous (porous and composite) materials.
Özdemir et al. [21] proposed a FE2 multiscale method for the ther-
mo-elastoplastic analysis of heterogeneous solids.
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Residual stresses in MMC result from thermo-elastoplastic
deformation. Therefore, in principle, it is possible to introduce mul-
tiscale method to study all parts of residual stresses in MMC. Such
a spark of hope arose after the work of Golanski et al. [22] who
modeled both the macro and micro thermal residual stresses in
surface TaC/stellite and TiC/stellite composite layers via multiscale
modeling method. This example indicates that the multiscale mod-
eling method is a powerful tool to explore the residual stresses in
composites. Unfortunately, this model only deals with elastic
deformation and is not suitable for MMC. In many processes of
MMC, such as heat treatment, material processing and friction stir
welding, plastic deformation is an important phenomenon in the
metal matrix. Hence, there remains a strong need to develop a
new multiscale model to investigate the residual stresses in MMC.

The primary aim of this study is to present a multiscale model
for predicting and separating the macro, elastic misfit and thermal
misfit residual stresses in MMC. Besides the initial and boundary
conditions, the multiscale model only takes the material properties
of each phase as the input parameters. Temperature dependent
material properties are taken into account. Both reinforcing parti-
cles and metal matrix are modeled as elasto-plastic materials. As
an illustration of this multiscale model, a real process of a real
material, i.e. the quenching process of the 3 lm 17 vol.% SiCp/
2124Al composite, is studied.

2. The multiscale thermo-elastoplastic problem

Generally, the numerical multiscale methods can be classified
into two basic types: concurrent and hierarchical [23,24]. In con-
current methods the macroscale and microscale models are strong-
ly coupled together and solved simultaneously, while the
hierarchical methods pre-compute the effective properties and
use them to construct a macroscale model further. Besides these
two basic methods, several methods fall in the spectrum between
them, for example, the semiconcurrent method and the hybrid-
semiconcurrent method [20,24–26].

A comparison between these methods with respect to the infor-
mation transfer, the relative computational costs and scales where
the final unknown fields are computed are listed in Table 1. In the
present work, the hybrid-semiconcurrent multiscale method is
employed where the semiconcurrent domain is defined by the
interesting and important region.

2.1. Macroscale thermo-mechanical problem

At the macroscale, a bounded structure X with the boundary @X
is considered. The governing heat equation at the macroscale is
given by

qMcM
_TM �r � ðkMrTMÞ ¼ 0 in X; ð1Þ

where subscript M denotes the macroscale, T the temperature, q the
density, c the heat capacity, k the heat conductivity coefficient, the
upper dot denotes the time derivative.

The initial temperature condition for the whole structure is
Table 1
Comparison between different multi-scale methods.

Methods Information transfer [24]* Relative com

Concurrent Xmicro () Xmacro High

Hierarchical Xmicro ! Xmacro Low

Semiconcurrent Xmicro $ Xmacro Middle

Hybrid-
semiconcurrent

Xmicro ! Xmacro; in hierarchical domain
Xmicro $ Xmacro; in semiconcurrent domain

�
Between hie
semiconcur

* () : strong coupling; !;$: weak coupling.
TMjt¼0 ¼ T0 in X; ð2Þ

where T0 is the initial temperature.
The convective heat transfer boundary condition for the heat

exchange qM is given by

qM ¼ hðT � TaÞ on @Xc; ð3Þ

where h is the heat transfer coefficient, Ta is the environmental
temperature.

The radiative heat transfer boundary condition for the heat
exchange qM is given by

qM ¼ AðT4 � T4
aÞ on @Xr; ð4Þ

where the factor A is the product of the emissivity factor times the
Stefan–Boltzmann constant.

The quasi-static mechanical equilibrium equation within the
infinitesimal deformation framework at the macroscale reads

r � rM ¼ 0 in X; ð5Þ

where r is the stress tensor.
The initial displacement condition at the macroscale is

uMjt¼0 ¼ 0 on @Xu; ð6Þ

where u is the displacement vector.

2.2. Microscale thermo-mechanical problem

For modeling the elastic misfit and thermal misfit residual
stresses, a cubic unit cell x with the boundary @x is considered
at the microscale. Homogeneous temperature distribution in the
unit cell is assumed. Such a hypothesis is acceptable under the fol-
lowing conditions. The heat transfer ability of all phases in MMC
should be good, for example in SiC/Al composites. On the other
hand, the size of the unit cell is quite small. Furthermore, the tem-
perature gradient at the macroscale is not extremely high. When
these conditions are obeyed, the temperature Tm in the domain
at the microscale are assumed to be equal to the temperature at
the macroscale Gaussian integration point T g

M . This means

Tm ¼ T g
M in x; ð7Þ

where subscript m denotes the microscale and superscript g
denotes the macroscale Gaussian integration point.

The quasi-static mechanical equilibrium equation within the
infinitesimal deformation framework at the microscale reads

r � rm ¼ 0 in x: ð8Þ

The initial displacement condition at the microscale is

umjt¼0 ¼ 0 in x: ð9Þ

The kinematic uniform boundary conditions (KUBC) generally hold

um ¼ e g
M � xm on @xu; ð10Þ

where e g
M is a macroscale strain tensor corresponding to the

macroscale Gaussian integration point which is defined as the
putational costs Scales, where the final unknown fields are computed

Macro and micro

Macro

Macro and micro

rarchical and
rent

Macro for whole domain, micro for semiconcurrent
domain
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macro–micro point in the present work, xm is the position of the
boundary node. In the present work, two microscale models are con-
structed via different definitions of e g

M in order to separate the macro,
elastic misfit and thermal misfit residual stresses (see Section 2.5).

2.3. Microscale constitutive model

At the microscale, every phase in MMC is described by an infi-
nitesimal thermo-elastoplastic constitutive model [27]. In this
way, the model can handle the situations that plasticity occurs in
both the reinforcing particles and the metal matrix. For rigid
ceramic reinforcing particles that normally undergo only elastic
deformation, the yield stress of them is then set as a large number
near infinite (e.g. 1015 MPa). The J2-flow theory of thermo-elasto-
plasticity is adopted.

The total strain tensor is decomposed as

etotal
m ¼ ee

m þ ep
m þ eth

m ; ð11Þ

where subscript m denotes the microscale, and superscript e, p and
th denote elastic, plastic and thermal, respectively. The thermal
strain tensor is calculated by

eth
m ¼ aDTI; ð12Þ

where a is the coefficient of thermal expansion, DT denotes the
temperature variation, I denotes the second order identity tensor.

The stress tensor is calculated via the Hooke’s law

rm ¼ Dm : ee
m; ð13Þ

Dm ¼
Em

ð1þ mÞð1� 2mÞ I � I þ E
1þ m

I
� �

; ð14Þ

where E is the Young’s modulus, m is the Poisson’s ratio, I is the
fourth order identity tensor.

The von-Mises yield function [27] is defined by

f mðrm; pmÞ ¼
ffiffiffiffiffiffiffiffi
3=2

p
kdevðrmÞk � rmðpmÞ; ð15Þ

where p indicates the accumulated plastic strain (APS), k � k denotes
the norm of the indicated tensor, devð�Þ denotes the deviator of the
indicated tensor,

ffiffiffiffiffiffiffiffi
3=2

p
kdevðrÞk denotes the von-Mises equivalent

stress and rðpmÞ denotes the yield stress.
The Voce type isotropic hardening rule [28] is

rmðpmÞ ¼ r1m þ hmpm þ r0
m � r1m

� �
expðlmpmÞ; ð16Þ

where r0 is the initial yield strength, r1 is the ultimate strength,
both h and l are the material constants.

2.4. Macroscale constitutive model

At the macroscale, the MMC is regarded as a homogenized
material and also described by a J2-flow theory of thermo-elasto-
plasticity [27]. The effective constitutive model of MMC is con-
structed based on pre-computed effective properties via
computational homogenizations. The determination of the effec-
tive properties including the CTE hai, Young’s modulus hEi, Pois-
son’s ratio hmi and isotropic hardening function of MMC are
described in detail in reference [29]. The pre-constructed effective
constitutive model of the MMC is summarized:

eM ¼ eep
M þ eth

M; ð17Þ
eep

M ¼ ee
M þ ep

M; ð18Þ
eth

M ¼ haiDTI; ð19Þ
rM ¼ Deff : ee

M; ð20Þ

hDi ¼ hEihmi
ð1þ hmiÞð1� 2hmiÞ I � I þ hEi

1þ hmi I
� �

; ð21Þ

f MðrM; pMÞ ¼
ffiffiffiffiffiffiffiffi
3=2

p
kdevðrMÞk � rMðpMÞ; ð22Þ
where superscript ep denotes elasto-plastic, hDi denotes the fourth
order effective elastic tensor, rMðpMÞ is the isotropic hardening
function which is an Akima spline interpolation function of
hrMisesi with respect to hpi (see reference [29] for more details).

2.5. Separation of the residual stresses via different definitions of
boundary condition

The total residual strain etotal in each phase i is the sum of the
macro residual strain ee

M , the elastic misfit residual strain emE

and the thermal misfit residual strain emT [8].

etotal
i ¼ ee

M þ emE
i þ emT

i : ð23Þ

Similarly, the corresponding total residual stress rtotal in each phase
i is the sum of the macro residual stress rM , the elastic misfit resi-
dual stress rmE and the thermal misfit residual stress rmT [8].

rtotal
i ¼ rM þ rmE

i þ rmT
i : ð24Þ

It should be noted here that the elastic misfit residual stress is the
load transfer of the macro residual stress from one phase to another.
Therefore, the elastic misfit residual stress is generated due to the
inner cause that the elastic properties of the metal matrix differ
from those of the reinforcing particles.

From this point of view, the macro and elastic misfit residual
stresses should be grouped together due to the same external
cause which is the inhomogeneous macroscale deformation. This
inhomogeneous macroscale deformation is measured by the
macroscale elasto-plastic strain eep

M . In order to compute the macro
and elastic misfit residual stresses, the boundary condition of the
microscale model I is constructed by

uI
m ¼ eep

M � xm: ð25Þ

Using this boundary condition, the microscale model I computes the
residual stress field which is the sum of the macro and elastic misfit
residual stresses, i.e. rM þ rmE

i , from which the homogenized macro
and elastic misfit residual stresses hrM þ rmE

i i in phase i over the
microscale domain (e.g. a unit cell) can be computed via the
homogenization function. A homogenized stress hri is useful
because it reflects the stress averaged over the microscale domain
and is comparable to a measured stress in a gauge volume via neu-
tron diffraction measurement.

The elastic misfit residual stress rmE
i is a kind of micro stress

(also is referred to as type II stress), the microscale stress equilib-
rium of rmE

i over the microscale domain equals to zero.

V rmE
pa

D E
þ ð1� VÞ rmE

ma

� 	
¼ 0; ð26Þ

where V denotes the volume fraction of reinforcing particles, sub-
scripts pa and ma denote reinforcing particles and metal matrix.

The mixture of the homogenized macro and elastic misfit resi-
dual stresses equals to the macro residual stress rM .

rM ¼ V rM þ rmE
pa

D E
þ ð1� VÞ rM þ rmE

ma

� 	
: ð27Þ

Then the homogenized elastic misfit residual stress in each phase
hrmE

i i can be separated by subtracting rM from hrM þ rmE
i i.

rmE
i

� 	
¼ rM þ rmE

i

� 	
� rM: ð28Þ

The thermal misfit residual stress rmT
i can be computed by con-

structing a boundary condition for the microscale model II via the
macroscale thermal strain eth

M .

uII
m ¼ eth

M � xm: ð29Þ

With the help of the homogenization function, the homogenized
thermal misfit residual stress in each phase hrmT

i i can be obtained.



Fig. 1. Illustration of the multi-scale solution scheme for modeling the ‘macro + elastic misfit’ residual stresses.

Fig. 2. Illustration of the solution scheme for modeling the thermal misfit residual
stress.
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The microscale stress equilibrium of rmT
i implies that the average of

rmT
i over the microscale domain vanishes, which gives

V rmT
pa

D E
þ ð1� VÞ rmT

ma

� 	
¼ 0: ð30Þ

Finally, the homogenized total residual stresses hrtotal
i i can be com-

puted by the sum of rM , hrmE
i i and hrmT

i i which is

rtotal
i

� 	
¼ rM þ rmE

i

� 	
þ rmT

i

� 	
: ð31Þ

Similarly, the homogenized total residual strains hetotal
i i can be com-

puted by the sum of ee
M , hemE

i i and hemT
i i which gives

etotal
i

� 	
¼ ee

M þ emE
i

� 	
þ emT

i

� 	
: ð32Þ
3. Numerical computations and experiments

3.1. Numerical solution framework

The model is about a three-dimensional (3D) thermo-elastoplastic
multiscale problem concerning a multiphase material. To solve this
problem, multiscale numerical method is adopted. The integration
in time is discretized by the implicit finite difference (Euler-back-
ward) method. In every time step, the spatial problem is solved



Table 2
Macroscopic coordinates of eight macro–micro points.

Macro–micro point Coordinates (mm)

X Y Z

P0a 1.90 0.40 7.38
P1 1.55 0.43 6.42
P2 2.00 0.44 5.41
P3 1.67 0.49 4.35
P4 1.63 0.43 3.12
P5 1.82 0.39 2.11
P6 1.67 0.63 0.67
P7b 1.94 0.47 0.13

a Near the top surface of the real composite component. In the one eighth
structure, P0 is also near the top boundary face.

b Near the center of the real composite component. In the one eighth structure,
P7 is near the bottom boundary face.

Fig. 4. Finite element mesh for the unit cell. Half of the matrix is transparent so that
the inside particle can be seen.
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by means of multiscale numerical method based on finite element
technique. All domains at both macroscale and microscale are
meshed by unstructured tetrahedrons with 4-nodes using the
Delaunay triangulation software TetGen [30]. Linear shape func-
tions are used for the displacement interpolation.

The solution algorithm for solving the macro and elastic misfit
residual stresses in one time step is illustrated in Fig. 1. Each time
increment consists of a ‘‘macroscale thermal’’ part and a ‘‘multi-
scale mechanical’’ part. At the macroscale the stresses and tangen-
tial stiffness are computed via the effective constitutive model of
MMC except the macro–micro points, where the stresses and tan-
gential stiffness are computed via the microscale problem. The
solution algorithm for solving the thermal misfit residual stress
is illustrated in Fig. 2.

3.2. Material and process

As an illustration of the present multiscale model, residual
stresses of a 3 lm 17 vol.% SiCp/2124Al composite plate quenched
from 505 to 25 �C are studied.

The macroscopic geometry, coordinates, finite element meshes
and the boundary faces are shown in Fig. 3. Only one eighth of
the macroscopic geometry is modeled since the problem is sym-
metric. Eight macro–micro points are defined and their coordinates
are summarized in Table 2. The eight macro–micro points
approximately arranged as a line (‘a’, see Fig. 3) that is close to
the measured line by the neutron diffraction reported in reference
[8]. The reported experimental results [8] are taken to compare
with the predicted results. The unit cell model used for the micro-
scale simulation is shown in Fig. 4.

The temperature dependent properties of 2124Al [29,31] and
SiC [32] are plotted in Fig. 5. The plastic properties of 2124Al are
h = 0 and l = 20 which are defined in Eq. (16). The effective material
properties of the 3 lm 17 vol.% SiCp/2124Al composite are deter-
mined by the computational homogenization technique [29].

The software MSFESL (Multi-scale finite element simulation
laboratory) is developed by the present authors through object ori-
ented techniques. The multiscale computations are carried out in
MSFESL running on a ThinkStation-D20 with 2 Xeon 5690 CPUs
(3.47 GHz) and 120 GB memory.

4. Results and discussion

4.1. Temperature

Fig. 6 pictures the macroscale temperature distribution at dif-
ferent times: the beginning (0.215 s), a short period after beginning
(0.970 s) and near end of the quenching process. Obviously, a tem-
perature gradient at different times can be observed. As one would
Fig. 3. Macro-scale symmetrical geometry model of composite plate. The macro–micro
diffraction in reference [8] so the experimental data reported in reference [8] can be use
the reader is referred to the web version of this article.)
expect, the temperature field is approximately isotropic in the X–Y
plane of the plate except boundary regions.

The temperature history and cooling rate of P0, P3 and P7 are
shown in Fig. 7. The cooling rate curves in Fig. 7(b) are obtained
by differentiating the temperature curves in Fig. 7(a) with respect
to time. Fig. 7(b) shows that: (i) at the beginning of quenching pro-
cess, the cooling rate of the component surface (e.g. at location of
P0) is higher than that of the composite inner part (e.g. at location
of P3 and P7); (ii) a short period (�0.3 s) later, the cooling rate of
points are almost attached to the red line ‘a’ which is measured by the neutron
d for comparison. (For interpretation of the references to color in this figure legend,



Fig. 5. Temperature dependent material properties of 2124Al [29,31] and SiC [32].

Fig. 6. Distribution of the macroscale temperature that is simulated by the
macroscale model at different times during the quenching process.
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the component surface is then lower than that of the composite
inner part.

Figs. 6 and 7 show that both the distribution and evolution of
the temperature of the plate are inhomogeneous. These character-
istics of temperature will lead to inhomogeneous deformation of
the MMC plate.

4.2. Total residual strains and stresses

The predicted and measured total residual strains in both
2124Al and SiC are compared in Fig. 8(a) and (b). Fig. 8(a) shows
that in 2124Al, the predicted total residual stress components XX
and YY are very close to each other as one would expect. The pre-
dicted results are perfectly symmetrical across the half-thickness
line, while the measured ones are partly asymmetrical. Both the
values and the profiles of the predicted total residual strain compo-
nents XX and YY agree well with the measured ones. A little differ-
ence between the predicted value of the total residual strain
component ZZ and the measured one at the half-thickness location
is observed.

Fig. 8(b) shows that the variation magnitude of the total resi-
dual strains in SiC is much smaller than that in 2124Al. Both the
values and the profiles of the predicted total residual strain compo-
nents XX and YY agree with the measured ones. The predicted total
residual strain component ZZ is almost constantly 900 le which is
lower than the measured one. The closer to the surface, the higher
measured residual stress component ZZ.

The difference between the predicted and measured results
may be attributed to four main factors. Firstly, the neutron mea-
sured results only reflect the residual strains of a specific (hkl)
crystalline plane. In reference [8], the Al(111) reflection was used
for measurements of the XX and YY components of residual strains,
the Al(002) reflection was used for measurement of the ZZ compo-
nent of residual strains, and the SiC(111) was used for measure-
ment of all SiC residual strains. Differently, the present
multiscale model treats the Al alloy and SiC as bulk and homoge-
nized materials, in other words, they are molded as isotropic con-
tinuum mediums. Secondly, in real case the MMC plate has strong
texture [8], while this is not considered in the multiscale simula-
tion. Thirdly, the measured residual strains/stresses in reference



Fig. 7. Evolutions of temperature (a) and cooling rate (b) of micro–macro points P0, P3 and P7.

Fig. 8. Comparison between the predicted and the measured total residual strains in 2124Al and SiC.

Fig. 9. Comparison between the predicted total residual stresses and the mapped residual stresses from the measured total residual strains in 2124Al and SiC.
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[8] included measurement errors. According to the analysis in ref-
erence [8], all the measured total residual strain curves of 2124Al
have been translated into compression with the magnitude about
1500 le. In order to obtain accurate measured data and assess
the measurement errors, it is better to perform a measurement
system analysis. Such analysis needs more measured residual
strain/stress results. Fourthly, the multiscale computation involves
error due to uncertainties in the input data such as the material
properties of 2124Al and SiC. The computation accuracy of the
multiscale model also depends on the mesh size, the time incre-
ment, the interpolation function, the element type, etc [33].

Comparison between the predicted total residual stresses in
each phase and the mapped ones [8] from measured total residual
strains is shown in Fig. 9. The values and profiles of the predicted
and measured total residual stresses are similar. Even though, dif-
ferences between the predicted and mapped total residual stresses
are obvious, especially in component ZZ for both Al and SiC. For
example, the predicted total residual stress rtotal

Al;zz is about 37 MPa,

while the mapped total residual stress rtotal
Al;zz is about �75 MPa. In

another reference [5], the mapped total residual stress rtotal
Al;zz is

about 0 MPa.
The residual stresses connect to the residual strains through the
Hooke’s law. Therefore, the previously mentioned reasons that
cause the differences between the predicted and measured resi-
dual strains can also cause the differences between the predicted
and measured residual stresses. In addition, the mapped total
stresses were computed through the second order polynomial fit-
ting functions of the measured total strains. In this way, fitting
errors are introduced. Moreover, the elastic properties used in
the present study to compute the residual stresses are bulk mate-
rial data. Differently, those to compute the residual stresses in ref-
erence [8] were crystalline elastic properties.
4.3. Macro residual strains and stresses

In Fig. 10, the predicted macro residual stresses via both the
macroscale model and the microscale model I are compared with
the reported measurement results [8], which are mapped from
the measured residual strains with the help of the Eshelby model.
As expected, the computed macro residual stresses are the same as
those homogenized from the microscale model despite some
numerical error. This verifies that rM þ rmE

i

� 	
¼ 0, in other words,



Fig. 10. Comparison between the multiscale predicted macro residual stresses and
the separated macro residual stresses via Eshelby model. The ‘‘simulated from
macroscale’’ denotes that the macro residual stresses are computed directly from
the macroscale problem. The ‘‘simulated from macroscale’’ denotes that the macro
residual stresses are homogenized from microscale model I.

Fig. 11. Distribution of the macro residual stresses that is computed by the
macroscale model.
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Eq. (27) holds. This confirms that the numerical accuracy of the
multiscale computation is quite good. Furthermore, the predicted
macro residual stress components XX, YY and ZZ integrate to zero
across the thickness of plate. The variation profile of the predicted
macro residual stress components XX and YY is close to a second
order polynomial curve. However, according to reference [8], the
reported results appeared to be net compression due to the mea-
sure problem with the d0 parameter.

The macro residual stress distribution is shown in Fig. 11. It can
be seen that the field of the macro residual stress component XX is
more or less a 90� rotation of that of the component YY. The results
also confirm that all three components of the macro residual stress
in the X–Y plane are approximately isotropic except the near
boundary regions where significant boundary effects exist.

The heterogeneous distribution and evolution of the macro
temperature lead to inhomogeneous deformation across the whole
macro domain. As a result, internal stress presented. In reality,
when the stress in the metal matrix reaches its yield stress plastic
deformation occurs in the metal matrix. However, the MMC is
modeled as a (virtual) homogeneous material at the macroscale.
Hence, when the stress in the homogenized MMC reaches the
effective yield stress, plastic flow starts in the homogeneous
material.

Fig. 12 shows that the maximum APS is �0.0025. This value
reflects the level of the plastic deformation that is caused by
the inhomogeneities of the macro temperature distribution and
evolution. The plastic deformation caused by the misfit of the elas-
tic properties or the CTE between the reinforcing particles and the
metal matrix will be considered in the microscale model rather
than in the macroscale model.

It is worth noting that from the atomic perspective, plastic
deformation of the polycrystalline metals or alloys is a conse-
quence of the comparable distortion of the individual grains by
means of dislocation slip. During the continuous plastic flow differ-
ent microscale processes predominate. Besides, plastic deforma-
tion is a history dependent physical process, but not a
thermodynamic state function. Although the constitutive equa-
tions can reasonably capture the strain–stress curves, they
describe the elasto-plastic deformation in a phenomenological
way rather than in a physically satisfactory way. Hence, the APS
(e.g. shown in Fig. 12) that reflect the level of plastic deformation
is not uniquely related to the dislocation structure of the material
and does not have definite physical significance [34].

4.4. Elastic misfit residual strains and stresses

The predicted elastic misfit residual stresses in both 2124Al and
SiC are plotted in Fig. 13, together with the mapped ones deter-
mined from reference [8]. It can be seen that the predicted compo-
nents XX and YY approximately agree with the mapped ones.
However, the variation trend of the mapped component ZZ is
opposite to that of the predicted one. In addition, it can be seen



Fig. 12. Distribution of the accumulated plastic strain that is calculated by the
macroscale model.
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that the variation amplitudes of the elastic misfit residual stresses
are much smaller than those of the total residual stresses. This can
also be explained by the analytical equation proposed in reference
[8], i.e., the elastic misfit residual stress component XX in the metal
matrix is [8]

rmE
xx;ma

D E
¼ �0:100rM;xx þ 0:0265rM;yy þ 0:0265rM;zz: ð33Þ

Because rmacro
xx � rmacro

yy , and rmacro
zz � 0, as shown in Fig. 10, rmE

xx;m

D E
then approximates

rmE
xx;ma

D E
� ð�0:100þ 0:0265ÞrM;xx ¼ �0:0735rM;xx: ð34Þ

The 3D elastic misfit residual stress fields at different macro–micro
points (in other words, different macroscale locations) are pictured
in Fig. 14. As shown in Fig. 14(a)–(c), at P0, for all three components
XX, YY and ZZ, the metal matrix mainly maintains tensile elastic
misfit residual stress (the red and yellow areas). However, obvious
compressive elastic misfit residual stress can also be seen in some
parts (the blue part). The particle undergoes pure compressive elas-
tic misfit residual stress. At P3, as shown in Fig. 14(d)–(f), all three
components XX, YY and ZZ approximate to zero. This is because the
macro residual stress at the location (�4:35 mm away from the cen-
ter of the plate along the thickness, i.e. Z, direction) of P3 is near
zero as shown in Fig. 10. At P7 (i.e. the location of �0:13 mm away
from the center of the plate along the thickness direction), as shown
in Fig. 14(g)–(i), the metal matrix contains both compressive and
tensile elastic misfit residual stresses. The area of the compressive
ones is larger than that of the tensile ones. Hence, the metal matrix
apparently maintains compressive elastic misfit residual stress.

The elastic misfit residual stresses are accompanied by the
macro residual stresses. Therefore, the macro and elastic misfit
residual stresses, i.e. rM þ rmE

i , are calculated together in micro-
scale model I. If the von-Mises equivalent stress in the metal
Fig. 13. Comparison between the predicted elastic misfit residual stresses via Microstruc
2124Al and SiC.
matrix exceeds its yield strength, plastic deformation occurs.
Fig. 15 shows the corresponding APS fields at different macro–mi-
cro points, P0, P3 and P7. It should be mentioned here that these
APS fields are caused by the macroscale temperature gradient
and the misfit of elastic properties, especially the elastic modulus.
It can be seen that the metal matrix at P0 experiences the maxi-
mum level of plastic deformation, while at P3 the metal almost
has no plastic deformation.

4.5. Thermal misfit residual strains and stresses

Fig. 16 compares the predicted thermal misfit residual stresses
from the microscale model II and the mapped ones with the help of
the Eshelby model [8]. As expected, the predicted thermal misfit
residual stresses are hydrostatic, i.e. the three principal directions
have the same value. The predicted thermal misfit residual stresses
in the metal matrix (about 40.0 MPa) and the mapped ones agree
well with each other. However, the predicted ones in particles
(about �458.0 MPa) and the mapped ones differ. The mapped ther-
mal misfit residual stresses were not hydrostatic probably due to
errors from measurement and data process [8].

One may expect that the stress equilibrium of the thermal mis-
fit residual stresses over the microscale domain equals to zero
according to Eq. (30). Actually, 0:17	 ð�458Þ þ ð1:0� 0:17Þ	
40 MPa ¼ �44:66 MPa, which is undesirable non-zero. Meanwhile,
as shown in Fig. 17, concerning each component of the thermal
misfit residual stress, a part of the metal matrix exhibits compres-
sive stress. For example, concerning the thermal misfit residual
stress component XX, a part of area with compressive stress is pre-
sent in the metal matrix along the X-axis direction.

The reason for this may be due to the computational error intro-
duced by the linear displacement boundary condition (see Eq.
(29)). In the multiscale mechanics theory, in order to obey the Hill’
condition [35]

hrm : emi � hrmi : hemi

¼ 1
Vm

Z
@Vm

ðum � hemi � xÞ � ðtm � hrmi � nÞdSm ¼ 0; ð35Þ

two basic types of boundaries are frequently used: the KUBC as
shown by Eq. (10), and the static uniform boundary conditions
(SUBC) [36]. However, in the strict sense, the KUBC is a strong
boundary condition. There is no reason to assume that the RVE
boundaries will remain flat. When the boundaries are assumed to
be flat, the KUBC impose undesirable constraints, for example, the
situation occurs here is that the KUBC cannot guaranty that
hrmi ¼ 0, in other words, tm–0. The SUBC may improve the accura-
cy and help to solve this problem because tm can be set to a zero
vector in the SUBC. This is a subject of our current work.

Concerning the influence of the KUBC on the multiscale compu-
tation accuracy, one might worry that the KUBC may also affect the
ture model I and the determined elastic misfit residual stresses via Eshelby model in



Fig. 14. The 3D elastic misfit residual stress fields: (a), (b), (c) at micro–macro point P0; (d), (e), (f) at micro–macro point P3; (g), (h), (i) at micro–macro point P7. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. The 3D accumulated plastic strain fields at different micro–macro points computed by microscale model I.

Fig. 16. Comparison between the predicted thermal misfit residual stresses via
Microstructure model II and the separated thermal misfit residual stresses via
Eshelby model in 2124Al and SiC.
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computation accuracy of the macro and elastic misfit residual
stresses. The computation results dissolve this worry, because as
indicated by the results in Fig. 10, Eq. (27) holds.

The APS field caused by the thermal misfit is shown in Fig. 18. It
can be seen that the metal matrix is more or less divided into two
parts: the inner part and the outer part. In the inner part near to
the matrix/particle interface large plastic deformation occurs,
while in the outer part near the boundary the plastic deformation
drops to a small value. Such a distribution differs from the image in
Fig. 15, where the APS that is caused by the macroscale tem-
perature gradient and the elastic misfit is more uniformly dis-
tributed in the whole part of the metal matrix. The large plastic
deformation in the inner part near to the matrix/particle interface
releases the residual stress significantly and promotes the damage
near to the matrix/particle interface.

4.6. Applications and future developments of the present multiscale
model

In the present multiscale model, all phases in heterogeneous
materials are modeled as general elasto-plastic materials. In this



Fig. 17. The distribution of the thermal misfit residual stress computed by microscale model II.

Fig. 18. The distribution of the accumulated plastic strain computed by microscale
model II.
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way, in addition to the metal matrix composites, other heteroge-
neous materials, for instance, the dual-phase steel [37] could be
also included in this framework. For phases that only show an elas-
tic deformation, the yield strength can then be set to a large value
as done in the present work. Regarding the fiber or whisker rein-
forced metal matrix composites, the effective constitutive model
should consider the anisotropic behaviors of thermal and mechan-
ical properties. For example, the Hill’s yield criterion could be
considered.

The future development in predicting the residual stresses in
heterogeneous materials at least includes: (i) predicting the origins
of residual stress during material forming process (for this case,
extension of the present model to the finite deformation frame-
work is required) and welding; (ii) predicting the residual stress
evolution during in-service and failure processes. These require a
lot of works to do. Integrated finite element simulation technique
may be a proper method to transfer the residual stresses to the
model about the in-service and failure processes. Furthermore, in
order to obtain more accurate results and take account of the real
microstructure attributes, simulated realistic microstructures or
scanned real microstructures by means of micro-CT technique
should be employed. In this case, the computational efficiency
should also be improved.

5. Conclusions

1. This is the first attempt to develop a 3D multiphysical multi-
scale model to study the residual stresses in multiphase mate-
rials under the hybrid-semiconcurrent multiscale framework.
As an illustration, the quenching residual stresses in SiCp/
2124Al composites are modeled. The total residual stresses
are then separated into the macro, elastic misfit and thermal
misfit residual stresses. The present model provides a new tool
to gain a deep insight into the residual stresses in multiphase
materials.

2. The model shows very encouraging results which coincide with
reported experimental data very well. The predicted total resi-
dual strains in the metal matrix and the reinforcing particles
agree very well with the reported measured ones. The predicted
total, macro, elastic misfit and thermal misfit residual stresses
agree reasonably well with the reported experimental ones.
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