7B04铝合金薄板的搅拌摩擦焊接及 接头低温超塑性研究^{*}

杨超1.2) 王继杰2) 马宗义1) 倪丁瑞1) 付明杰3) 李晓华3) 曾元松3)

1) 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016

2) 沈阳航空航天大学材料科学与工程学院, 沈阳 110036

3) 北京航空制造工程研究所金属成形技术研究室, 北京 100024

摘要在转速1600 r/min,焊速200 mm/min;转速800 r/min,焊速200 mm/min;转速400 r/min,焊速400 mm/min3组参数下对2 mm厚的退火态7B04铝合金薄板进行搅拌摩擦焊接,研究了焊接参数对焊缝质量及微观组织的影响,并分析了焊核区的低温超塑性变形行为.结果表明,通过控制焊接参数,可获得良好的焊接质量,接头强度系数达100%.焊核区发生动态再结晶,生成细小等轴晶,母材晶粒尺寸约为300 μm,转速为1600,800和400 r/min时晶粒尺寸分别为2,1和0.6 μm.这种细晶组织有利于焊核区超塑变形,在300℃,焊核区在1×10⁻³和3×10⁻⁴ s⁻¹应变速率下获得了160%~590%的延伸率,在350℃,1×10⁻³ s⁻¹条件下获得高达790%的最大延伸率,在约400℃时超塑性变形行为消失.

关键词 超高强铝合金,搅拌摩擦焊接,超塑性,微观组织

中图法分类号 TG457 文献标识码 A

文章编号 0412-1961(2015)12-1449-08

FRICTION STIR WELDING AND LOW-TEMPERATURE SUPERPLASTICITY OF 7B04 AI SHEET

YANG Chao^{1,2)}, WANG Jijie²⁾, MA Zongyi¹⁾, NI Dingrui¹⁾, FU Mingjie³⁾, LI Xiaohua³⁾, ZENG Yuansong³⁾

 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016

2) College of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110036

 Metal Forming Technology Department, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024

Correspondent: NI Dingrui, associate professor, Tel: (024)83978630, E-mail: drni@imr.ac.cn Supported by National Natural Science Foundation of China (No.51331008) Manuscript received 2015-03-18, in revised form 2015-09-20

ABSTRACT Annealed 7B04 Al sheets in thickness of 2 mm were subjected to friction stir welding (FSW) under three rotation rate and welding speed parameters of 1600 r/min, 200 mm/min; 800 r/min, 200 mm/min and 400 r/min, 400 mm/min, respectively. The effect of welding parameters on the tensile property and microstructure of the FSW joints were investigated, with more efforts focusing on the low-temperature superplasticity of the nugget zones (NZs). The results showed that FSW joints with high quality could be produced by controlling welding parameters, with a joint strength coefficient of 100% being obtained. Dynamic recrystallization took place in the NZs with fine and equiaxed grains generated. The grain size of the base material was about 300 µm, while it was significantly decreased in the NZs with decreasing the rotation rate: about 2, 1 and 0.6 µm for the above three samples, respectively. The fine grain structure of the NZs could facilitate their superplastic deformation. The NZs exhibited su-

^{*} 国家自然科学基金资助项目 51331008 收到初稿日期: 2015-03-18, 收到修改稿日期: 2015-09-20 作者简介: 杨 超, 男, 1989 年生, 硕士生 DOI: 10.11900/0412 1961 2015 00154

perplastic elongations ranged from 160% to 590% at 300 °C at strain rates of 1×10^{-3} and 3×10^{-4} s⁻¹. The maximum superplasticity of 790% was obtained at 350 °C at the strain rate of 1×10^{-3} s⁻¹. The ability to superplastic deformation disappeared in the NZs at 400 °C.

KEY WORDS ultra-high strength aluminium alloy, friction stir welding, superplasticity, microstructure

在航空航天制造工业中,存在大量的机身薄壁 铝合金焊接,其中一些焊缝除了要求具有良好的焊 接强度外,还要求在后续成形处理中具有一定的超 塑变形能力,而目前传统的熔化焊缝尚无法满足这 一要求.搅拌摩擦焊(FSW)作为一种新型固相连接 技术^[1,2],可有效避免传统熔化焊产生的各种缺陷, 可实现传统认为不可焊的高强铝合金(如2000系和 7000系铝合金)的高质量焊接^[3,4].搅拌摩擦加工 (FSP)是基于FSW原理发展出的一种多功能的塑性 加工技术^[5,6],其中利用FSP技术制备细晶/超细晶铝 合金及其超塑性研究引起了愈来愈多的关注^[5-10].这 表明,铝合金FSW焊缝也有可能像FSP加工区一样 具备超塑变形能力,因为二者的主要区别在于一是 双板焊接,一是单板加工.

铝合金超塑性属于细晶超塑性, 而热机械加 工、等通道转角挤压等制备细晶/超细晶组织的剧烈 塑性变形工艺较为复杂或受工件形状限制, 难以实 现批量加工.研究^[11-14]指出, 利用FSW/FSP技术可以 实现焊核区的组织细化, 获得细晶/超细晶组织, 不 仅可获得优良的综合力学性能, 而且具有超塑变形 能力^[9].目前, 研究较为系统的是FSP铝合金的超塑 性. Ma 等^[8]和 Mishra 等^[15]研究表明, FSP 7075 铝合 金晶粒尺寸为 3.8 µm时, 在 480 ℃, 3×10⁻³~1×10⁻² s⁻¹ 应变速率范围内获得了超过 1250%的延伸率; 随后 Liu 和 Ma^[16]报道了FSP 7075 超细晶铝合金在 350 ℃, 1×10⁻² s⁻¹应变速率获得了 540%的延伸率, 实现了低温-高应变速率超塑性.这些研究都证明了 利用FSP技术可以在铝合金中获得细晶/超细晶组 织, 从而获得良好的超塑性性能.

与FSP不同, FSW时接缝对接面上的氧化皮 将会被搅入焊核区, 这将对接头力学性能产生一 定程度的影响^[17]. 然而, 现阶段关于 7000 系铝合金 焊接接头的超塑性研究还很少, Motohashi 等^[18]报 道了 7075-T6铝合金经 FSW (转速 1500 r/min, 焊速 300 mm/min)后, 在焊缝处可获得细晶组织, 并且焊 核在 400 ℃, 1×10⁻³ s⁻¹应变速率条件下获得了 440% 的延伸率.

7B04是一种航空航天用高强铝合金,被用作机 身蒙皮、上下机翼梁壁、机舱壁等,在航空航天领域 应用较广^[19,20],其中7B04铝合金薄板占较大比重.这 就要求该合金具有良好的综合性能,特别要求焊接接头要具有较好的超塑性,以满足后续成形要求, 而焊核区具有超塑性是实现焊接接头超塑成型的 前提条件.目前关于7B04铝合金FSW的文章已有 少量报道^[21,22],但关于FSW接头超塑变形行为的研 究尚未见报道.

本工作对2mm厚的退火态7B04铝合金薄板 进行FSW对接焊接,分析了焊接参数对焊接质量、 微观组织和力学性能的影响,重点研究了焊核区的 低温超塑性,探讨了其变形机理.

1 实验方法

本实验所用材料为退火态7B04铝合金薄板,尺 寸为400 mm×95 mm×2 mm,其主要化学成分(质量 分数,%)为: Zn 3.17, Mg 0.15, Cu 0.67, Fe 0.15, Si 0.05, Mn 0.05, A1余量.

焊接设备为FSW-5LM-020型数控搅拌摩擦焊机,实验中采用钢质焊接工具,轴肩直径为10mm; 搅拌针为M4的锥形螺纹针,长度为1.65mm.选取3 组参数对薄板进行对接焊接,分别为转速400r/ min,焊速400mm/min(样品命名为400-400);转速 800r/min,焊速200mm/min(样品命名为800-200); 转速1600r/min,焊速200mm/min(样品命名为 1600-200).

用 MEF4A 型万能光学显微镜(OM), Quanta 600 型扫描电镜(SEM)和 Tecnai F20 型透射电镜(TEM) 对接头微观组织进行分析. 金相样品垂直于焊缝的 横截面取样,样品经打磨、机械抛光后,用体积分数 比为 NHO₃:HCl:HF:H₂O=2.5:1.5:1:95 的 Keller 试 剂腐蚀,进行金相观察;TEM 样品取自焊缝中心位 置,经粗磨、精磨至 60 µm,采用双喷电解减薄仪减 薄,双喷液为体积分数 25% 的 HNO₃和 75% 的 CH₃OH 混合溶液,温度-35 ℃,电压 17 V.利用 D/ MAX2400 型X射线衍射仪(XRD)分别对母材(BM) 区与400-400样品焊核区的横截面进行物相分析.

拉伸样品垂直于焊缝方向切取,长度140 mm, 宽6 mm,厚度1.5 mm,标距40 mm,样品尺寸如图1 所示.BM纵向拉伸样品与焊缝拉伸样品尺寸相同, 其中,每组拉伸样品取3个,拉伸结果取其平均值. 拉伸实验在SANS-CMT5205 电子万能试验机上进 行,初始应变速率为1×10⁻³ s⁻¹.超塑拉伸试样沿焊缝 方向在焊缝中心切取,标距长2.5 mm,宽1.4 mm,试 样经打磨、抛光至1 mm 厚左右,超塑性实验在 IN-STRON 5848 微型拉伸机上进行,实验温度 200~ 400℃,样品拉伸前保温 15 min,初始应变速率为1× 10⁻³和3×10⁻⁴ s⁻¹.

2 实验结果

2.1 接头力学性能

表1为退火态7B04 铝合金BM的拉伸性能测试结果.可见,BM沿平行与垂直于轧制方向抗拉强度相当,约为210 MPa.表2为FSW接头的拉伸性能测试结果.可见,接头的抗拉强度约为213 MPa,与BM抗拉强度相当.这表明在所选取的工艺参数下

图1 搅拌摩擦焊(FSW)接头室温拉伸样品和焊核区超 塑性拉伸样品尺寸

Fig.1 Schematics of tensile sample of friction stir welding (FSW) joint at room temperature (a) and superplastic tensile sample of nugget zone (NZ) (b) (unit: mm)

均实现了该材料的等强度焊接.

2.2 接头微观组织

图2a~c为垂直于焊缝方向的宏观金相组织OM 像,其中焊核右侧为前进侧(AS),左侧为后退侧 (RS);图2d~f所示为3组焊接参数下宏观焊缝成型 外貌照片.可以看出,3组焊接参数下均得到了平滑 无缺陷的焊缝,焊合区均未观察到明显的宏观缺 陷,得到了完整形状的焊核区.图3为7B04铝合金 BM金相显微组织.可见,BM晶粒沿轧制方向,呈粗 大的板条状,平均晶粒宽度约为20 µm,晶粒沿轧制 方向长度约为300 µm.

图4为7B04铝合金BM及3种样品FSW焊核 区显微组织的TEM像.从图4a可以看出,晶粒内存 在大量的粗大短棒状MgZn₂析出相,长径比约4:1. 3组参数下的焊核区均具有细晶组织,如图4b~d所 示,且随着转速的升高,晶粒尺寸增大,由400 r/min 时的0.6 μm增大到1600 r/min时的2 μm.在晶粒内 部及晶界处分布着细小的析出相,并且随着转速的 降低,析出相逐渐增多,但焊核区域析出相数量明 显比BM中减少.与BM较为粗大的棒状析出相不 同,焊核区析出相细小均匀.

7B04 铝合金 BM 与样品 400-400 的焊核区的 XRD 谱如图 5 所示. BM 中除了 Al 基体衍射峰外,还 有明显的 MgZn₂析出相的峰.与 BM 相比,焊核区主 要为 Al 基体的衍射峰,析出相的衍射峰强度明显减 弱.即与 BM 相比,焊核区出现析出相的溶解现象, 这与 TEM 像中观察到的析出相变化趋势一致.由于 焊核区域在焊接过程中经历强烈热循环,焊核区域 有极少量颗粒溶解后重新析出,而其密度与尺寸远

表1	7B04铝合金母材	(BM)的室温拉伸性能
----	-----------	-------------

abl	e	Tensile	properties	of 7B04	aluminum a	alloy	base metal	(BM)	at room	temperature
-----	---	---------	------------	---------	------------	-------	------------	------	---------	-------------

Direction	Tensile strength / MPa	Yield strength / MPa	Elongation / %
Lengthways	210.0	90.0	16.5
Crosswise	211.0	98.0	16.3

= ^	7DOI旧人人 中化 FOX	7 十立 21	66 空 泊日	ふんし	44-44
रू ₄	/B04 铝合金溥似 FSW	/ 按大	的 全 温 1	立1日1	生能

Table 2 Tensile properties of FSW 7B04 aluminum alloy at room temperature

Specimen	Ratation rate r•min ⁻¹	Welding speed mm∙min ⁻¹	Tensile strength MPa	Yield strength MPa	Elongation %
400-400	400	400	213.5	76.0	14.5
800-200	800	200	216.5	98.5	14.7
1600-200	1600	200	212.5	78.5	16.5

图 2 不同参数下7B04铝合金薄板FSW焊缝和宏观显微组织的OM像 Fig.2 OM images of different welds (a~c) and FSW 7B04 aluminum alloy joints (d~f) of samples 400-400 (a, d), 800-200 (b, e) and 1600-200 (c, f) (AS—advancing side, RS—retreating side)

图 3 7B04 铝合金 BM 显微组织的 OM 像 Fig.3 OM image of 7B04 aluminum alloy BM

远低于母材中的强化相,因此其衍射峰很微弱.

2.3 接头超塑性拉伸结果

图 6a 为 300 ℃下 7B04 铝合金 BM 和不同焊核 区的初始应变速率-延伸率曲线.可见,3种焊核区 在 10⁻¹~10⁻⁴ s⁻¹应变速率范围内获得了超塑性,且在 3×10⁻⁴ s⁻¹初始应变速率下获得了最大的延伸率,分 别为 590%,407%和 324%.在1×10⁻³ s⁻¹应变速率下 3 种焊核区最大延伸率分别为 530%,200%和 160%. 当转速为 400 r/min,焊速为 400 mm/min (样品 400-400)时,焊核区在 300 ℃与 1×10⁻³和 3×10⁻⁴ s⁻¹较低初 始应变速率下,均获得了较大的延伸率,分别为 530%和 590%,表现出了良好的低温超塑性. 对7B04铝合金BM和超塑性较好的样品400-400分别在一定的温度和初始应变速率下测试了初始应变速率及温度变化对超塑性的影响.图6b为3×10⁻⁴ s⁻¹初始应变速率和不同温度下的延伸率曲线.可以看出,随着温度的升高,400-400样品的延伸率逐渐升高,在300℃时达到最大值590%,之后随温度的升高,延伸率逐渐下降,到400℃时其超塑性消失.

在考查初始应变速率和温度对延伸率影响的 过程中(图 6a 和 b), 7B04 铝合金 BM 延伸率未表现 出随初始应变速率和温度变化而明显变化的情况, 这是由于 7B04 铝合金 BM 晶粒粗大, 塑性变形能力 较差.

图 6c 为 400-400 样品在 300 和 350 ℃下的初始 应变速率-延伸率曲线.可以看出,随着温度的升高, 最佳初始应变速率随之增大, 300 ℃时,获得最大延 伸率的最佳初始应变速率为 3×10⁻⁴ s⁻¹, 当温度升高 至 350 ℃时,其获得最大延伸率的最佳初始应变速 率增大为 1×10⁻³ s⁻¹,且获得了 790%的延伸率.

取拉伸实验中400-400样品真应变为0.1时对 应的真应力作为流变应力,与应变速率取双对数坐 标得到曲线,其斜率即为应变速率敏感指数*m*,如图 6d所示.以往研究^[23]表明,超塑性变形要求*m*至少在 0.3以上.本实验中样品400-400在所有测试温度及 不同应变速率下的*m*在0.02~0.59之间.各温度下获

图 4 7B04 铝合金 BM 和 FSW 焊核区显微组织的 TEM 像 Fig.4 TEM images of 7B04 aluminum alloy BM (a) and FSW NZs of samples 400-400 (b), 800-200 (c) and 1600-200 (d)

图 5 7B04 铝合金 BM 与样品 400-400 FSW 焊核区的 XRD谱

Fig.5 XRD spectra of 7B04 aluminum alloy BM and NZ of sample 400-400

得最大延伸率时对应的m在0.32~0.59范围内,材料 表现出了良好的超塑性.

图7为3组参数下制备的焊核区样品获得最大 延伸率的断后形貌.可以看出,各样品均表现出了 相对均匀的超塑性变形特点.

对晶粒细小、获得优异超塑性的400-400样品 断口附近的表面形貌进行 SEM 观察,如图 8 所示. 可以看到,在断口附近,样品表面表现出了晶粒被 拉长的现象,具有晶界滑移特征¹¹⁶,因此,在此细晶 铝合金超塑性变形过程中,晶界滑移为其主要滑移 机制.

3 分析讨论

在FSW过程中,可热处理强化铝合金的自身状态及FSW参数对其接头强度具有一定影响.Wang等^[23]研究了在固定焊速下(95 mm/min),转速(750,950,1150 和1500 r/min)对2 mm厚T74B态(固溶+过人工时效)的7B04薄板FSW接头拉伸性能的影响.结果表明,当转速较低时焊缝表面均比较光滑;转速较高时焊缝表面较为粗糙,存在较多的颗粒.转速为750 r/min时接头的强度较高,达到BM抗拉强度(487 MPa)的97.4%,随转速升高强度降低至BM的50%~60%.这是由于时效态铝合金的FSW接头强度受热输入的影响较明显,热输入量高导致强化相粗化并部分溶解所致^[24].而本工作中的板材为退火态,不存在强化相粗化问题,所以可以实现等强度焊接(表2).

在FSW过程中,焊接参数对焊核区晶粒尺寸和 析出相形貌等具有重要影响.BM组织为粗大的板 条状组织(图3),而焊核区晶粒在焊后明显细化(图 4),且随着转速的升高,晶粒尺寸增大,由400 r/min 时的0.6 μm增大到1600 r/min时的2 μm.这是由于 焊接过程中转速愈高,热输入愈大,导致再结晶之

图 6 FSW 7B04 铝合金的超塑性拉伸性能

- Fig.6 Superplastic tensile properties of FSW 7B04 aluminum alloy
 - (a) elongation vs strain rate at 300 $^\circ\!\mathrm{C}$
 - (b) elongatation vs temperature of 7B04 aluminum alloy BM and specimen 400-400 at strain rate of 3×10^{-4} s⁻¹
 - (c) elongation vs strain rate of specimen 400-400 at 300 and 350 ℃
 - (d) flow stress vs strain rate of specimen 400-400 at different temperatures (m—strain rate sensitivity index)

Fig.7 Sample morphologies of FSW 7B04Al NZs after superplastic deformation under various conditions (a) undeformed sample

- (b) sample 1600-200 under 300 $^\circ\!\mathrm{C}$ and 3×10^-4 $s^{\scriptscriptstyle -1}$
- (c) sample 800-200 under 300 $^\circ\!\mathrm{C}$ and $3{\times}10^{{}^{-4}}\,s^{{}^{-1}}$
- (d) sample 400-400 under 300 $^\circ\!\mathrm{C}$ and 3×10^-4 $s^{\scriptscriptstyle -1}$
- (e) sample 400-400 under 350 $^\circ\!C$ and $1{\times}10^{{}^{-3}}\,{\rm s}^{{}^{-1}}$

图 8 样品 400-400 超塑性拉伸断口附近的 SEM 像 Fig.8 SEM images of surface morphologies of tensile 400-400 sample near fracture tip under 300 ℃, 3×10⁻⁴ s⁻¹ (a) and 350 ℃, 1×10⁻³ s⁻¹ (b)

后的晶粒长大.并且焊核区析出相细小均匀,这是由于在焊接过程中搅拌工具的高速旋转及摩擦使焊核区经历强烈热循环,在热循环作用下,沉淀相先是溶入基体,随后以少量细小的析出相形貌均匀析出^[17,25].

低温超塑变形具有能耗低、模具寿命长、工件 表面质量好、成型构件力学性能好等优点[26,27],然而 对铝合金获得真正意义上的低温超塑性是非常困 难的,目前公开报道的各种加工技术制备的细晶铝 合金低温超塑性,只有极少数的最低温度低于 200℃,因此350℃以下的超塑性一般就被认为是 低温超塑性^[27]. 在本研究中, 焊核区由于在FSW过 程中发生动态再结晶使晶粒细化而具有细晶组织, 因而在一定条件下具有超塑性(图 6). 样品 400-400 的焊核区在300 ℃,1×10⁻³和3×10⁻⁴ s⁻¹较低初始应 变速率下,均获得了较大的延伸率,分别为530%和 590%, 表现出了良好的低温超塑性(图 6a), 此结果 优于 Motohashi 等^[18]报道的 7075-T6 铝合金的 FSW 焊缝在400 ℃,1×10⁻³ s⁻¹初始应变速率下得到的延 伸率(440%). 与Liu和Ma¹⁰报道的7075铝合金的 FSP区在300 ℃.1×10⁻³ s⁻¹初始应变速率下得到的 延伸率(530%)相当,这表明细晶铝合金在低温、低 应变速率下可获得良好的超塑性. 而当超塑性测试 温度升高到400℃,其超塑性消失,这是由于在高温 下其晶粒长大粗化所致116.

在分析初始应变速率和温度对超塑性的影响 过程中,退火态7B04铝合金BM样品均未表现出超 塑性(图 6a 和 b),这是由于BM组织为粗大的非等轴 晶粒(图 3),塑性变形能力差.这表明FSW可实现焊 缝区晶粒细化,并且在一定条件下可获得超塑性. 在图 6b中,200℃条件下,母材的伸长率比400-400 样品高很多.这是因为,超塑性变形是材料的一种 特殊性能与变形方式,对于铝合金来说,其主要变 形机制为晶界滑移,一般要求晶粒尺寸小于10 µm, 只有温度、变形速率的外界条件满足这一变形机制 时,才能激发其晶界滑移变形机制,材料才能表现 出超塑性;相反,满足不了时,其变形性能甚于不如 普通材料.比如超细晶、纳米晶在室温时的塑性甚 至不如一般材料.

4 结论

(1) 在 3 组焊接参数下对 2 mm 厚的退火态 7B04铝合金进行搅拌摩擦焊,均得到了表面质量良好的对接接头,搅拌摩擦焊接接头的抗拉强度约为 213 MPa, 实现等强度焊接.

(2) 退火态 7B04 铝合金母材为轧制态组织, 晶 粒呈粗大板条状, 宽度约为 20 µm, 沿轧制方向长度 约 300 µm, 晶粒内分布粗大的析出相. 搅拌摩擦焊 焊核区发生动态再结晶, 得到细晶组织, 晶粒尺寸 在转速为 1600, 800 和 400 r/min 时分别为 2, 1 和 0.6 µm; 晶粒内弥散分布着细小的析出相.

(3) 在 300 ℃, 3 组焊接参数焊核区样品延伸率 均随初始应变速率的降低而增大.

(4) 样品 400-400 在 3×10⁻⁴ s⁻¹初始应变速率、 200~400 ℃范围内,其延伸率先随温度的升高而增 大,300 ℃时达到最大,随后随温度的升高而减小, 直到400 ℃时超塑性消失.在300和350 ℃下,样品 获得最大延伸率时的最佳初始应变速率随温度的 升高而增大.焊核区的超塑性变形主导机理以晶界 滑移为主.

参考文献

- Thomas W M, Nicholas E D, Needham J C, Murch M G, Temple-Smith P, Dawes C J. *Great Britain Pat*, *9125978.8*, 1991
- [2] Thomas W M, Nicholas E D, Needham J C, Murch M G, Temple-Smith P, Dawes C J. US Pat, 5460317, EPS 0616490, 1991
- [3] Mishra R S, Mahoney M W. Mater Sci, 2001; 507: 357
- [4] Luan G H, Guo D L, Zhang T C, Sun C B. Weld Technol, 2003; 32: 1

(栾国红,郭德伦,张田仓,孙成彬.焊接技术,2003;32:1)

- [5] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 2002; 42: 163
- [6] Ma Z Y, Mishra R S, Mahoney M W. Acta Mater, 2002; 50: 4419
- [7] Ma Z Y, Mishra R S, Mahoney M W, Grimes R. Mater Sci Eng, 2003; A351: 148
- [8] Ma Z Y, Mishra R S. Acta Mater, 2003; 51: 3551
- [9] Ma Z Y, Liu F C, Mishra R S. Acta Mater, 2010; 58: 4693
- [10] Xue P, Xiao B L, Ma Z Y. Acta Mater, 2014; 50: 245
 (薛 鹏,肖伯律,马宗义.金属学报, 2014; 50: 245)
- [11] Flores O V, Kennedy C, Murr L E, Brown D, Pappu S, Nowak B M, McClure J C. Scr Mater, 1998; 38: 703
- [12] Jata K V, Semiatin S L. Scr Mater, 1998; 38: 703
- [13] Su J Q, Nelson T W, Mishra R S, Mahoney M. Acta Mater, 2003; 51: 713
- [14] Salem H G. Scr Mater, 2003; 49: 1103
- [15] Mishra R S, Mahoney M W, McFadden S X, Mara N A, Mukherjee A K. Scr Mater, 1999; 42: 163
- [16] Liu F C, Ma Z Y. Scr Mater, 2008; 58: 667
- [17] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
- [18] Motohashi Y, Sakuma T, Goloborodko A, Ito T, Itoh G. Mater Wissenschaft Werkstofftechnik, 2008; 39: 4
- [19] Jian H G, Jiang F, Xu Z Y, Guan D K. Hot Work Technol, 2006; 35(6): 66

(蹇海根,姜锋,徐忠艳,官迪凯.热加工工艺,2006;35(6):66)

- [20] Liu X T, Cui J Z. Mater Rev, 2005; 19(3): 47(刘晓涛, 崔建忠. 材料导报, 2005; 19(3): 47)
- [21] Wang M, Zhang H J, Zhang J B, Zhang X, Yang L. Mater Eng Perform, 2014; 23: 1881
- [22] Wang Y H, Chen Y H, Huang C P, Ke L M. Hot Work Technol, 2012; 41(15): 161
- (王运会,陈玉华,黄春平,柯黎明. 热加工工艺, 2012; 41(15): 161)
- [23] Charit I, Mishra R S. Acta Mater, 2005; 53: 4211

- [24] Ren S R, Ma Z Y, Chen L Q, Zhang Y Z. Acta Metall Sin, 2007; 43: 225
- (任淑荣, 马宗义, 陈礼清, 张玉政. 金属学报, 2007; 43: 225) [25] Liu F C, Ma Z Y. Acta Metall Sin, 2008; 44: 319
- (刘峰超,马宗义.金属学报,2008;44:319)
- [26] Pu H P, Liu F C, Huang J C. Metall Mater Trans, 1995; 26: 1153
- [27] Ma Z Y, Mishra R S. Friction Stir Superplasticity for Unitized Structures. Chapter 4, Netherlands: Elsevier, 2014: 19

(责任编辑:肖素红)