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Abstract 

 

Low rare-earth (RE) containing magnesium alloys are being considered for the lightweight 

automotive applications to reduce fuel consumption and emissions. Design of magnesium 

components requires strain-controlled low-cycle fatigue (LCF) behavior. This study was aimed 

to evaluate the cyclic deformation characteristics and LCF life of a low (0.2 wt.%) Nd-containing 

ZEK100-O alloy. The alloy contained equiaxed grains along with some Mg12Nd particles, and 

exhibited a relatively weaker basal texture. While slight cyclic softening occurred at high strain 

amplitudes, cyclic stabilization remained at lower strain amplitudes. Fatigue life of ZEK100 

alloy was longer than that of the extruded RE-free AZ31 and AM30 alloys, due to a fairly good 

combination of strength with ductility. The asymmetry and skewness of hysteresis loops, which 

were characterized by eccentricity, angle deviation, and relative slope change, respectively, were 

effectively improved relative to the extruded RE-free alloys, arising from less extensive twinning 
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caused by texture weakening and grain refinement. While the pseudo-elastic behavior tended to 

decrease with RE addition, it largely remained. An additional term was thus introduced to 

calculate the total strain range, i.e., anpet εεεε ∆+∆+∆=∆ , where the total anelastic strain range 

( anε∆ ) consisted of both tensile and compressive components. Fatigue crack initiated from the 

near-surface imperfections, and crack propagation was characterized by fatigue striation-like 

features.   

 

Keywords: Magnesium alloy; cyclic deformation; anelastic behavior; twinning-detwinning; 

texture weakening. 

 

1. Introduction 

 

Vehicle lightweighting is today recognized as one of the most important methods to improve fuel 

efficiency and reduce anthropogenic climate-changing, environment-damaging, costly and 

human death-causing
1

 emissions [1-7] because of the huge environmental concerns and 

mounting global energy demand in the transportation industry. Indeed, it has recently been 

portrayed as the storm of lightweighting – a revolution in materials, processes, and business 

models – which is brewing on the horizon of the automotive industry. Passenger vehicles, 

usually thought as the less detrimental ones, are in fact reported to be among the most diverse 

means of transportation due to their abundance [8]. Hence, finding alternatives to reduce the fuel 

                                                 
1
 According to Science News entitled “Air pollution kills 7 million people a year” on March 25, 2014 at 

http://news.sciencemag.org/signal-noise/2014/03/air-pollution-kills-7-million-people-year: “Air pollution isn’t just 

harming Earth; it’s hurting us, too. Startling new numbers released by the World Health Organization today reveal 

that one in eight deaths are a result of exposure to air pollution. The data reveal a strong link between the tiny 

particles that we breathe into our lungs and the illnesses they can lead to, including stroke, heart attack, lung cancer, 

and chronic obstructive pulmonary disease.” 
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consumption of passenger vehicles has been of major interest and has been attracting a great deal 

of research curiosity [4,9]. Actually, fuel efficiency can be ameliorated by about 8% for each 10% 

weight reduction [10]. In this context ultra-lightweight Mg alloys have attracted considerable 

interest in the transportation industry because of their low density, high strength-to-weight ratio, 

and superior damping capacity. Nevertheless, several constraints are faced in the application of 

magnesium alloys, including high directional anisotropy and poor formability at room 

temperature. The development of strong texture (i.e., preferred orientation) in the deformation 

process leads to the tension-compression yield asymmetry and mechanical anisotropy in the 

wrought magnesium alloys [11,12]. This is related to the hexagonal close-packed (hcp) crystal 

structure of magnesium and its limited deformation modes [13,14], where mechanical twinning 

plays a substantial role in the deformation mechanisms. Both the tension-compression yield 

asymmetry and room-temperature formability could be effectively improved by adding alloying 

elements, especially rare-earth (RE) elements due to their tendency to induce texture 

randomization during hot processes (e.g., extrusion or rolling), which leads to the decrease of 

texture intensities and the activation of basal slip [13-17].  

 

Cyclic deformation and fatigue properties are crucial for the structural applications of 

magnesium alloys, since the structures and devices undergo dynamic loading in service [14,18-

24,]. Consequently, having a clear comprehension of fatigue and cyclic deformation behavior is 

important in the design and the assessment of durability and safety. Some studies on the fatigue 

of rare-earth containing magnesium alloys have been reported in the literature [14,18,25-27]. For 

instance, Yang et al. [28] conducted very high cyclic fatigue tests of a RE-containing extruded 

magnesium alloy Mg-12Gd-3Y-0.5Zr, and observed much relieved tension-compression yield 
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asymmetry and enhanced fatigue failure resistance in comparison with RE-free AZ31 alloy. The 

fatigue strength of extruded Mg-10Gd-1Nd and Mg-10Gd alloys in the form of S-N curves was 

also evaluated via stress-controlled high cycle fatigue tests [29]. Limited strain-controlled low 

cycle fatigue tests on the RE-containing extruded magnesium alloys have been performed as well, 

including Mg-10Gd-3Y-0.5Zr [14,18,25,26], Mg-3Nd-0.2Zn-0.5Zr [30], Mg-8Gd-3Y-0.5Zr 

[27,31], where the basal texture was observed to be weakened and the tension-compression yield 

asymmetry basically disappeared as reflected by the nearly symmetrical hysteresis loops 

[14,18,25,26]. However, the non-linear or pseudo-elastic behavior still remained, unlike the 

situation of face-centered cubic (fcc) metals [14,18,25,26,30].  The above RE-containing 

wrought magnesium alloys with available fatigue data included a relatively large amount of 

expensive RE elements. Material cost is important in the automotive sector, and needs to be 

affordable for the general public, thus an Al-free and low (on the order of ~0.2 wt.% Nd) 

neodymium-containing ZEK100 wrought magnesium sheet alloy has recently been developed.  

 

The microstructure and texture development of ZEK100 alloy have been studied during warm 

rolling and annealing [16,17]. Forming-limit diagrams were developed at elevated temperatures 

and varying strain rates, and this alloy reached greater major true fracture strains, by up to 60%, 

than the AZ31B alloy for all strain paths at all temperatures and strain rates examined [32]. The 

formability of this alloy in a two-stage forming process with intermediate annealing was also 

studied [33]. ZEK100 alloy exhibited superior warm formability over AZ31B alloy, indicating 

the potential for the volume production of magnesium automotive parts [34]. The tensile 

properties and constitutive behavior of ZEK100 alloy was also studied at varying strain rates and 

sample orientations at room temperature [35-37]. Although the basal texture was weakened, this 
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alloy still presented anisotropy in the tensile properties and in the bending behavior [36]. While 

tensile loading-unloading tests with an incremental strain were performed [38], no fatigue data 

on the ZEK100 magnesium alloy under strain-controlled tests are available in the literature so far. 

It is unclear if cyclic hardening or softening would occur, to what extent the tension-compression 

yield asymmetry would remain, and whether pseudo-elastic behavior would still be present, and 

how it can be quantified. Therefore, the objective of the present study was to identify cyclic 

deformation behavior of a low RE-containing ZEK100 rolled magnesium alloy in relation to the 

twinning-detwinning characteristics and non-linear elastic behavior.    

 

2. Material and Experimental Procedure 

 

The test material used in this study was a recently-developed rolled ZEK100 magnesium alloy 

sheet of 3 mm in thickness, in an annealed condition designated as ZEK100-O supplied by 

Magnesium Elektron via the University of Waterloo and Magna International Inc. The annealing 

was done at 500°C for 15 minutes in an electrical oven [32,33]. The chemical composition of the 

alloy is given in Table 1 [39]. Microstructures were observed using an optical microscope (OM) 

equipped with an image analysis system, and a scanning electron microscope (SEM) JSM-

6380LV along with an Oxford energy dispersive X-ray spectroscopy (EDS) system. Sample 

preparations were accomplished by following standard metallographic techniques, and 

microstructural features were revealed using an etchant of acetic picral solution (i.e., 4.2 g picric 

acid, 10 ml acetic acid, 10 ml H2O and 70 ml ethanol). Textures were obtained using a 

PANalytical X-ray diffractometer (XRD) with Cu Kα radiation at 45 kV and 40 mA in a back 

reflection mode by measuring partial pole figures (i.e., ranging between Ψ=0
o
 and 75°). Texture 
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data were afterwards analyzed based on MTEX software [40]. It should be noted that the 

defocusing stemming from the rotation of the XRD sample holder was corrected using the 

experimental data obtained from magnesium powder diffraction. The same XRD was also used 

to identify phases in the alloy. The diffraction angle (2θ), at which the X-rays hit the sample, 

ranged between 20° and 110° with a step size of 0.2° and 10s for each step. 

 

Tensile tests were performed by means of a computerized UNITED tensile testing machine with 

a sample gauge length of 25 mm (or a parallel length of 32 mm) at a strain rate of 1 × 10
-2

 s
-1

. 

Sub-sized fatigue samples (Fig.1) in accordance with ASTM: E8 standard were machined with 

the loading axis parallel to the extrusion direction (ED). Strain-controlled “pull-push” fatigue 

tests were conducted using a computerized INSTRON 8801 fatigue testing system at room 

temperature (i.e., about 23°C) with a sample gauge length of 12.5 mm (or a parallel length of 16 

mm). The test conditions consisted of a zero mean strain (i.e., a strain ratio of Rs=-1 or a 

completely reversed strain cycle) and a fixed strain rate of 1×10
-2

 s
-1

 with a triangular loading 

waveform. The low cycle fatigue tests were carried out at varying total strain amplitudes from 

0.2% to 1.2%. Two samples were tested at each strain amplitude level. At lower strain 

amplitudes (e.g., 0.2%, 0.3% and 0.4%), strain-controlled tests were sustained for 10,000 cycles 

before being converted to load control, with a sine waveform at a frequency of 50 Hz. Once tests 

were completed, SEM was used to examine the fracture surfaces of fatigued samples, aiming to 

identify the various features involving fatigue initiation and propagation mechanisms. In addition, 

a special interest was given to the near fracture surface areas of the fatigued samples, which were 

cut, mounted, ground, polished and etched to examine the eventual appearance of residual twins.     
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3. Results and Discussion 

 

3.1 Microstructure  

 

Fig.2 shows a three-dimensional image of the microstructure of the rolled Mg ZEK100 alloy 

where the three observation directions are indicated (i.e., RD: rolling direction, TD: transverse 

directions, and ND: normal direction). It is seen that most of the grains in all the surfaces were 

basically characterized as equiaxed under a quasi-uniform distribution. This was due to the 

occurrence of dynamic recrystallization (DRX) during rolling which was followed by the 

annealing treatment [41].  Min and Lin [38] studied the microstructure of ZEK100 Mg alloy 

sheet in an as-fabricated state, and observed a lot of twins due to the initial cold work in the 

manufacturing process. After annealing, the pre-existent twins disappeared and equiaxed grains 

formed, which was in agreement with the results shown in Fig.2. Also, equiaxed grains were 

observed in other wrought Mg alloys (e.g., extruded AM30 [21,42] and AZ31 [20,22]), which 

displayed a relatively larger grain size in comparison with the present ZEK100. This was mainly 

due to the presence of the RE element neodymium (Nd) and the zirconium (Zr), as reported by 

Mirza et al. [18], where an extruded GW103K Mg alloy, containing gadolinium (Gd), yttrium 

(Y), and zirconium (Zr) elements, exhibited a much smaller grain size due to  their resistance to 

grain growth [43]. A similar effect of Nd on the microstructure of AZ31 magnesium alloy was 

also reported by Li et al. [44]. A typical SEM back-scattered electron image of the rolled 

ZEK100 sample is shown in Fig.3(a), where some particles were present. EDS line scan revealed 

that the white particles in Fig.3(a) were Nd- and Zr-containing ones (Fig.3(b)). As pointed out in 

[18], these RE and Zr-containing particles were capable of resisting the grain growth due to the 
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Zener pinning (also called the Zener drag effect) [45]. Likewise, other RE-containing particles 

(e.g., cerium [46] and yttrium [47]) were observed to play a similar role in the refinement of the 

grains. In addition, in the liquid Mg alloy, the dissolved Zr could effectively limit the growth of 

nucleating Mg grains via solute segregation while the subsequent constitutional undercooling 

promoted heterogeneous nucleation events ahead of the solidification front, thus refining the 

grain as well [48,49]. 

 

3.2 X-ray diffraction analysis   

 

Fig.4 shows the XRD pattern of the ZEK100-O Mg alloy. In addition to the obviously dominant 

α-Mg phase, both Zn and Nd-containing intermetallic compounds were detected in the form of 

MgZn and Mg12Nd phases, respectively. MgZn and Mg12Nd could also be seen from a typical 

back-scattered electron SEM image as shown in Fig.5. The EDS point analysis revealed an atom 

percent of 91.6% Mg and 8.4% Nd for particle A (Fig.5), which had an atomic ratio close to that 

of Mg12Nd. Similarly, an atom percent of 56.2% Mg and 43.8% Zn was obtained for particle B 

(Fig.5), which was close to the atomic ratio of MgZn. Indeed, the phases of Mg12Nd and MgZn 

could be seen from the Mg-Nd binary phase diagram [50] and the Mg-Zn binary phase diagram 

[51,52]. Likewise, Huang et al. [53] studied the change and evolution of the intermetallic phases, 

by increasing the rare-earth Gd content in a ZK60 magnesium alloy, which belonged to the same 

RE family as the present ZEK100. Their XRD investigations on the extruded ZK60-2.98Gd also 

revealed the presence of MgZn2 and Mg-Zn-Gd phases. This was related to the much higher Zn 

(6.27 wt.% Zn) and RE (2.98 wt.% Gd) in their ZK60-2.98Gd alloy, in comparison with the 

studied ZEK100 (1.3 wt.% Zn and 0.2 wt.% Nd, Table 1). When the amount of Gd was reduced 
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to 0.28 wt.%, the tri-phase Mg-Zn-Gd was no longer present [53]. Thus the absence of a tri-

phase in the ZEK100 might be due to the micro-addition of only 0.2 wt.% Nd, which was 

consumed to form Mg12Nd (Figs 4 and 5). Similarly, Wei et al. [54] studied a rare-earth 

containing cast Mg alloy (Mg-8Zn-1.5MM (misch metal)). They observed that the addition of 

the 1.5MM had a strong influence on the cast alloy by introducing “interdendritic” phases and 

structural modification of known binary phases. In particular, a lower weight percent of rare-

earth facilitated the formation of the MgZn phase and a considerably high weight percent of rare 

earth (i.e., 1.5MM in their study) led to the appearance of ternary phases. The presence of the 

Mg12Nd intermetallic phase in the ZEK100 alloy, as seen from  XRD and EDS evaluations (Figs 

4 and 5, respectively), would also be associated with the relatively low addition of Nd (0.2 wt.%) 

in Mg. 

 

Further studies by Grosse et al. [55] involved the assessment of the Mg-Nd binary system and 

presented a series of descriptions about the most favorable circumstances for the appearance of 

various Mg-Nd phases. A special attention was given to the Mg12Nd phase which was known to 

be metastable. Similar to Nayeb-Hashemi and Clark [50], Grosse et al. [55] qualified Mg12Nd as 

the richest intermetallic phase in the Mg-Nd system as it was depicted in the Mg-Nd binary 

phase diagram [52], and pointed out that it could easily be compared with other Mg12RE phases. 

It should be noted that, although the amount of zirconium (Zr) was slightly higher than that of 

neodymium (Nd) as listed in Table 1, no Mg-Zr intermetallic phase could be formed which could 

be understood by observing the Mg-Zr binary phase diagram [56,48]. 

 

3.3 Crystallographic texture 
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Orientation distribution functions (ODF) of the rolled ZEK100 Mg alloy are shown in Fig.6, 

where the positions of major texture components are indicated (i.e., locations A and B, 

respectively). It is known that main texture components in the hcp materials can be easily 

differentiated at a fixed section of ϕ2=0° and ϕ2=30° [57,58]. As seen from Fig.6, ϕ1 direction is 

along the horizontal axis whereas Φ direction lays in the vertical axis. Based on the Euler angles 

A (ϕ1=0
o
, Φ=25

o
, ϕ2=30

o
) and B (ϕ1=0

o
, Φ=25

o
, ϕ2=0

o
) from Fig.6, two major texture 

components in this alloy could be identified to be A{ } 01121000  and B{ } 01101000 , as 

illustrated in Fig.7. While the maximum intensity of component A was slightly lower than that of 

component B, i.e., 3.5 MRD (multiples of random distribution) vs. 3.9 MRD, as seen in Fig.6, 

the texture intensity was much lower in the ZEK100 alloy than in the RE-free Mg alloys, e.g., 

8.5~8.9 MRD in the AM30 alloy [57]. This observation supported the suggestion of texture 

weakening when RE elements were added in Mg alloys. Likewise, in the texture investigation of 

ZEK100 Mg alloy, Min and Lin [38] evaluated the (0001) pole figure and reported a maximum 

intensity of 3.621 MRD which was in good agreement with the obtained results. Another 

wrought RE-Mg alloy (i.e., Mg-10Gd-3Y-0.5Zr) was studied by Mirza et al. [25] who confirmed 

that the addition of RE elements to Mg alloys had a significant benefit of texture weakening and 

that even the addition of a small amount of gadolinium (Gd) was susceptible to the reduction of 

texture intensity in wrought Mg alloys. Hence, a direct analogy could be made with the present 

Nd-containing alloy with a relatively low MRD value.  

 

3.4 Hysteresis loops and tensile properties 
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Typical stress-strain hysteresis loops of the first, second and mid-life cycles obtained at a total 

strain amplitude of 1.2% and a strain ratio of Rs=−1 for the ZEK100 alloy are presented in Fig.8, 

where two additional wrought Mg alloys (i.e., GW103K and AM30 [18,21]) were added for the 

sake of comparison. The observation of the “opening quarters” of the first-cycle hysteresis loops 

(Fig.8(a)) could indeed be used to evaluate the yield strength at a strain rate of 1×10
-2

 s
-1

 for each 

of these alloys. The present ZEK100 alloy had a tensile yield strength of ~225 MPa which lay in-

between the two values obtained for the extruded AM30 and GW103K alloys (i.e., ~200 MPa 

[21] and ~240 MPa [18], respectively). This finding was expected, since the present ZEK100 

(with 0.2 wt.% Nd) was compared on purpose with a RE-free Mg alloy (e.g., AM30) and a 

relatively high RE-containing Mg alloy (GW103K with 10 wt.% Gd and 3 wt.% Y). This 

comparison once again brought up one of the major benefits from the addition of RE elements to 

Mg alloys even with moderate amounts, such as the case of the present ZEK100 alloy. Table 2 

lists the tensile properties of ZEK100 alloy obtained during tensile tests at a strain rate of 1×10
-2

 

s
-1

 at room temperature. An ultimate tensile strength (σUTS) of 300 MPa was acquired for the 

rolled ZEK100 alloy, which was fairly close to that of extruded high RE-containing alloys, e.g., 

GW103K Mg alloy with 10 wt.% Gd and 3 wt.% Y (~318 MPa) [25] and GW123K Mg alloy 

with 12 wt.% Gd and 3 wt.% Y (~335 MPa) [28]. He et al. [59] also reported an equivalent σUTS 

value of ~302 MPa for a RE-containing ZK60 alloy (with 1.3 wt.% Gd). It is clear that the slight 

(0.2 wt.% Nd) addition of Nd in the ZEK100 alloy along with 1.3 wt.% Zn and 0.25 wt.% Zr was 

pretty effective in improving the tensile properties. In fact, a higher or equivalent elongation of  

13.3% (Table 2) was noted for the ZEK100 in comparison with GW103K (8.3% elongation [25]) 

and AM30 (~13% elongation [21]). The superior ductility of the ZEK100 alloy would be related 

to its better formability [34].  
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It is also seen from Fig.8 that the hysteresis loop of the present ZEK100 alloy fell in-between 

those of the almost symmetrical GW103K and the tilted AM30 especially in the compressive 

phase. Due to the presence of a high amount of RE elements, GW103K displayed a practically 

symmetrical hysteresis loop, similar to that in the face-centered cubic (fcc) metals, such as 

aluminum, nickel and copper, which were controlled by the dislocation slip rather than twinning 

deformation [60]. The quantification of the hysteresis loops will be given later.  

 

3.5 Cyclic stress and strain responses 

 

The evolution of stress amplitudes and plastic strain amplitudes with respect to the number of 

cycles at different strain amplitudes from 0.2% to 1.2% is shown in Figs 9 and 10, respectively, 

under a semi-logarithmic scale along the X axis. It is observed that both stress amplitudes and 

plastic strain amplitudes augmented, whereas fatigue life of the material diminished with 

increasing total strain amplitudes. In addition, a slight cyclic softening could be seen at two 

highest strain amplitudes namely 1.0% and 1.2%, however, almost cyclic stabilization was noted 

for the remaining strain amplitudes especially at lower values of 0.2%-0.4%. Unlike the present 

ZEK100, cyclic hardening occurred at higher strain amplitudes due to the occurrence of 

extensive twinning in the descending and compressive phase and detwinning in the ascending 

and tensile phase during cyclic deformation along the extrusion direction in the RE-free wrought 

Mg alloys (e.g., AM30 and AZ31) [19-22,42]. On the other hand, Mirza et al. [18] showed that 

in the case of high RE-containing alloys such as GW103K with about 10 wt.% Gd and 3 wt.% Y, 

cyclic stabilization was observed up to a strain amplitude of about 1.0% due to the effect of RE 
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elements. The results shown in Figs 9 and 10 helped emphasize the conclusions drawn earlier 

when interpreting the hysteresis loops (Fig.8), where  ZEK100 Mg alloy exhibited, once again, a 

behavior lying in-between both comparison alloys (e.g., AM30 and GW103K). Similarly, Wu et 

al. [61] studied the cyclic deformation behavior of a RE-rich Mg-10Gd-2.0Y-0.46Zr alloy at 

300°C and observed cyclic softening characteristics at different total strain amplitudes, which 

was in agreement with the results obtained for ZEK100. In addition, the observed cyclic stress 

responses for ZEK100 could be further corroborated based on the assumptions made by Noster 

and Scholtes [62] who stated that strain hardening effect was diminutive at room temperature, as 

they described the effect of temperature on stress responses.  

 

3.6 Fatigue life and strain-life fatigue parameters  

 

Fig.11 displays the total strain amplitude 2/tε∆ as a function of the number of cycles to failure 

(i.e., fatigue life) for the rolled ZEK100 Mg alloy, in comparison with the data reported in the 

literature for both RE-free and RE-containing wrought Mg alloys [15,18,19,21,63]. The run-out 

data points where no failure occurred at 10
7
 cycles or more are labeled by horizontally directing 

arrows. A relatively enhanced fatigue life was obtained for ZEK100 Mg alloy, when compared to 

the RE-free alloys (e.g., AM30, AZ31 and AZ61). Besides, when compared with the rest of the 

RE-containing alloys (e.g., GW103K and ZK60), the current ZEK100 showed the ability of 

keeping up for a high and equivalent number of cycles to failure at the most total strain 

amplitudes, although it is an alloy that contained the least RE element (0.2 wt.% Nd, Table 1) 

among the three alloys. This suggests the effectiveness of Nd addition along with the proper 
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processing or alloy state (annealing O-state), which led to a fairly good strength and ductility 

(Table 2), since strain-controlled fatigue life is related to both characteristics. 

      

Another way of observing the fatigue behavior was conveniently through the expression of the 

total strain amplitude consisting of the elastic and plastic strain amplitudes separately, where the 

elastic strain component was denoted by the Basquin’s equation and the plastic strain constituent 

was known as the Coffin-Manson relation. The equation can be expressed as [19-21,13,64,65], 

 
( ) ( )c
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b

ffpet N
E

N
2
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222
ε

σεεε
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′
=
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+

∆
=

∆

,
 (1) 

where E  is the Young’s modulus (during fatigue testing, the average value for ZEK100 was 

~44.9 GPa), 
fN  is the number of cycles to failure, 

fσ ′  is the fatigue strength coefficient, b is 

the fatigue strength exponent, 
fε ′  is the fatigue ductility coefficient, and c is the fatigue ductility 

exponent. Fig.12 illustrates the elastic, plastic, and total strain amplitudes as a function of the 

number of reversals to failure (2 fN ). In order to make sure that cyclic stabilization, also called 

cyclic saturation, has already occurred, the stress and strain values of the mid-life cycles were 

used. Hence, the fatigue life parameters obtained by means of Equ.(1) were presented in Table 3. 

Begum et al. [19] reported a cyclic strain hardening exponent value n' of ~0.34 for a RE-free 

AZ31 Mg alloy. However, for the present rolled ZEK100 alloy n' was obtained to be ~0.15. The 

drop in comparison with AZ31 could be explained by the higher yield strength as mentioned 

earlier and the enhanced cyclic stabilization phenomenon due to the presence of less extensive 

twinning to be discussed later.  

 

3.7 Cyclic stress-strain curve 
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Like the monotonic tensile stress-strain curves [66], cyclic stress-strain response is important for 

determining the properties of fatigue resistance and represents a major aspect in understanding 

the overall strain-controlled cyclic deformation comportment. It allows to provide a full 

description of the relationship between the flow stress and plastic strain amplitude under cyclic 

loading [21,22], which could be expressed as follows, 

 

n

p
K

′








∆
′=

∆

22

εσ
, (2)  

where K ′ is the cyclic strength coefficient and n′  is the cyclic strain hardening exponent [67], 

with the stress amplitude and plastic strain amplitude both from the mid-life cycles at different 

total amplitudes applied. Fig.13 illustrates a superposition of the monotonic tensile stress-strain 

curve at a strain rate of 1 ×  10
-2

 s
-1 

and cyclic stress-strain curves (CSSC) [68] at mid-life cycles 

with the Y-axis stress indicated as the normal stress amplitude (
2

σ∆
), tensile peak stress, and 

compressive peak stress (absolute value), respectively, for the ZEK100 Mg alloy tested at a 

strain ratio of Rs=−1. It is seen that the results obtained from the tensile peak basically matched 

with those of the monotonic tensile tests, while the results obtained from the compressive peak 

(absolute value) were positioned below the monotonic stress-strain curve at higher strain 

amplitudes of 1.0% and 1.2%. This indeed reflected the asymmetry of the mid-life hysteresis 

loops, as seen in Fig, 8(c). In addition, the monotonic strain hardening exponent n was 

previously obtained to be about 0.18 (Table 2), whereas the cyclic strain hardening exponent n′  

was about 0.15 which was slightly lower than n. The fact that the normal CSSC was located 

below the monotonic stress-strain curve (Fig.13) directly reflected a slight cyclic softening at 

total strain amplitudes of 1.0% and 1.2%, as seen from Fig.9 and Fig.10. Since the difference 
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between cyclic and monotonic hardening exponents was considered minor (about 0.03) and there 

was a good overlapping between the monotonic stress-strain curve and CSSC up to total strain 

amplitude of 0.8 (Fig.13), the cyclic steady comportment was expected. Likewise, Begum et al. 

[19] conducted similar investigations about a RE-free extruded AZ31 Mg alloy and obtained 

0.13 and 0.34 for n and n′ , respectively. Therefore, the authors concluded that the extruded 

AZ31 was susceptible to be more hardened under cyclic loading conditions rather than the 

monotonic ones.  

   

3.8 Fractography  

 

Fig.14(a) and (b) display an overall view of fatigued samples tested at total strain amplitudes of 

0.4% and 1.0%, respectively. It is seen that fatigue cracks initiated from the specimen surface. 

As seen from the images taken at a slightly higher magnifications (Fig.14(c) and (d)), crack 

initiation occurred from the specimen surface or near surface defects. It was clear that fatigue 

crack propagation area was larger at a lower strain amplitude of 0.4% than at a higher strain 

amplitude of 1.0% (Fig.14(a) and (b)). The SEM images taken at a higher magnification in the 

crack propagation area (Fig.15(a) and (b)) showed that at both strain amplitudes, the fatigue 

crack propagation region encompassed some striation-like features which were basically the 

distinct line markings appearing on the fractured surface. Similar characteristics were presented 

in [19-22,61,69] as well. These striation-like markings were noted to be perpendicular to the 

crack propagation direction. In addition, a few secondary cracks could be perceived in the crack 

propagation region (Fig.15(a)). In Fig.15(b), some shallow dimples along with tear ridges 
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marked by arrows were visible, indicating the presence of larger plastic deformation in front of 

the crack tip at the higher strain amplitude.      

 

3.9 Qualification of hysteresis loop asymmetry and skewness characteristics 

 

Since the present ZEK100 alloy exhibited a certain extent of asymmetrical stress-strain behavior 

in tension and compression (Fig.8 and Fig.13), which are of major concern in relation to the 

influence of RE element addition as well as the twinning-detwinning behavior, it is thus 

necessary to quantify the asymmetry and skewness based on the stress-strain hysteresis loops. In 

this context, an eccentricity parameter e is first defined, which is simply the horizontal “gap” in 

the form of strain amount by which the point of intersection of a line passing through the upper 

and lower peaks of the loop with the X-axis is shifted from the coordinate origin, as shown in 

Fig.16 for the stress-strain hysteresis loops of mid-life cycles at a total strain amplitude of 1.2% 

and a strain ratio of Rs=−1. The eccentricity values for ZEK100, AM30 and GW103K alloys are 

indicated to be eZ, eA, and eG, respectively. It should be noted that the eccentricity could also be 

observed vertically, however it was only accounted for horizontally to avoid repetitive 

information. A perfectly symmetrical hysteresis loop, such as the case of face-centered cubic (fcc) 

metals (e.g., aluminum, nickel and copper) [60,70], would have a zero eccentricity value. 

Because of the skewness of its shape and its high asymmetry, the extruded AM30 had a value of 

eA = ~0.25%. However, the nearly symmetric GW103K, which exhibited a characteristic closer 

to the fcc materials as mentioned earlier, admitted a value of eG = ~0.02%, meaning that the loop 

was negligibly shifted from the origin. As expected, a value of eZ = 0.1% was obtained for the 

present ZEK100, which fell in-between eA and eG. These eccentricity values are summarized in 
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Table 4. Thus, this parameter helps quantify the asymmetry of the stress-strain hysteresis loops, 

which is directly linked to the amelioration of the fatigue behavior of the Mg alloys by the 

addition of the RE elements. 

 

Fig.17 illustrates two parameters which are the angle deviation ∆α and the relative slope change 

d. For instance, Fig.17(b) displays these two parameters for the ZEK100 Mg alloy, where two 

separate lines ( L1 and L2) were generated, with  L1 plotted from the lower peak B passing 

through the origin as a reference line, and L2 plotted from the lower peak to upper peak points of 

the hysteresis loop (points A and B in Fig.17(b)). Let us set α3 to be the angle between L1 and the 

horizontal axis and α4 to be the angle between L2 and the horizontal axis, then ∆αZ for the 

ZEK100 alloy becomes, 

 34 ααα −=∆ Z . (3)  

The relative slope change is also introduced through the example of ZEK100 alloy in Fig.17(b), 

which is computed as follows,              

     100
1

12 ×
−

=
Z

ZZ
Z

S

SS
d , (4)  

where SZ1 and SZ2 are the slopes of lines L1 and L2, respectively. For the sake of comparison, the 

above defined parameters were also determined for AM30 and GW103K alloys, as shown in 

Fig.17(a) and (c), respectively. The obtained values were summarized in Table 4. It is clear that 

the extruded AM30 Mg alloy exhibited the highest values of both the relative slope change and 

the angle deviation (dA = 34.5% and ∆αA = 11.5°, respectively), stemming from the strong 

asymmetry and the distorted shape of its cyclic hysteresis loop, whereas the extruded GW103K 

Mg alloy presented the lowest values (dG = 4.6% and ∆αG = 1.0°), which reflected the closeness 
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of the hysteresis loop of this high RE-containing alloy to that of a fcc alloy, due to the addition of 

the 10 wt.% Gd and 3 wt.% Y [18,25]. As expected, the results for ZEK100 fell in-between the 

two comparison alloys (i.e., dZ = 15.8% and ∆αZ = 5.1°), which once again revealed that the 

presence of 0.2 wt.% Nd is a major factor in ameliorating its cyclic deformation features 

compared with the  RE-free alloys (e.g., extruded AM30). 

 

The fourth parameter proposed in this study is to quantify the non-linear anelastic behavior in 

tension and compression, separately, so as to achieve the total anelastic strain. In the best case 

scenario concerning the symmetrical hysteresis loops, such as the case of fcc alloys, the total 

strain range (∆ԑt) from a hysteresis loop would simply consist of [64], 

     pet εεε ∆+∆=∆ , (5)  

where ∆ԑe is the total elastic strain range and ∆ԑp is the total plastic strain range. When the 

hysteresis loop exhibits a symmetrical shape, the total elastic strain range could be expressed as, 

     cetee −− ∆+∆=∆ εεε , (6)  

where ∆ԑe-t is the tensile elastic strain range and ∆ԑe-c is the compression elastic strain range. 

However, in the presence of tension-compression asymmetry in wrought magnesium alloys, 

Equs (5) and (6) are no longer valid, since no non-linear or pseudo-elastic behavior is taken into 

account. An additional term, representing the total anelastic strain range ( anε∆ ) is necessary, 

which can be written as two components, 

     cantanan −− ∆+∆=∆ εεε , (7)  

where ∆ԑan-t is the tensile anelastic strain range and ∆ԑan-c is the compressive anelastic strain 

range which are indicated in Fig.18 in the case of ZEK100 alloy. Then, the total strain range  

becomes, 
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     anpet εεεε ∆+∆+∆=∆ . (8)  

 

The obtained values of tensile, compressive and total anelastic strain ranges for ZEK100 and two 

associated alloys AM30 and GW103K are summarized in Table 4. As anticipated, AM30 

exhibited the highest values for the anelastic parameters, followed by ZEK100, and then 

GW103K, which displayed less noticeable pseudo-elastic comportment due to a high content of 

RE elements.  

  

3.10 Twinning-detwinning behavior 

 

Twinning in the plastic deformation of Mg alloys is important [18,71,80]. In the processing (e.g., 

extrusion, rolling), wrought magnesium alloys are deformed in such a way that the majority of 

grains have their basal planes approximately parallel to the process direction [13,72]. Therefore, 

if a load is applied along this direction, the activation stress would be comparatively low for the 

deformation twinning in compression (i.e., extension twinning) or in tension (i.e., basal slip 

and/or de-twinning) [18]. The activation stress would be fairly high in the case of prismatic and 

pyramidal slip systems for Mg alloys at room temperature [73]. Consequently, twinning and de-

twinning interchange by alternating activities at the time of cyclic loading. Wu et al. [74] stated 

in this context that most of the twins formed during compression vanished when the load was 

overturned. During cyclic deformation residual twins got progressively cumulated with 

increasing number of cycles [42,75]. Fig.19 displays the optical micrographs of the areas near 

the fracture surface at a strain amplitude of 1.2%, showing the overall distribution of residual 

twins in a ZEK100 fatigued sample. Similarly, Mirza et al. [18] and Fan et al. [42] reported 
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dense residual twins near the fatigue fracture surface of the extruded AM30. They pointed out 

that the occurrence of these twins was related to the inadequate number of slip systems at room 

temperature. In fact, Brown et al. [76] reported that twinning was the only deformation mode 

which happened to be activated and which had the ability of providing c-axis straining at room 

temperature. This is associated with the low crystal symmetry of hcp structures, in addition to the 

previously discussed strong preferred orientations for wrought magnesium alloys.    

        

Fig.19(b) demonstrates that many twins were indeed present in the microstructure. Hence, 

twinning was among the governing deformation mechanisms in the ZEK100 Mg alloy. In 

contrast, in Fig.19(c) a lesser extent of twinning was observed, which basically occurred in some 

large grains. This implicates that in some regions basal slip was a dominant mechanism, thus 

leading to the better symmetry of hysteresis loops of the ZEK100 Mg alloy in comparison with, 

for instance, AM30 alloy (Fig.8). In fact, twinning deformation was highly implicated in causing 

the asymmetry of wrought Mg alloys, which was generally characterized by an important 

tension-compression asymmetry as demonstrated by Wu et al. [74]. This asymmetry was mainly 

accredited to the extensive { } 11102110  extension twinning under compressive deformation 

along the process direction [13,77,78]. Gharghouri et al. [79] also noted that the pseudo-elastic 

effect in pure Mg specimens may be originated from the fact that { }2110  extension twins grow 

and shrink with the increase and decrease of the applied load, leading finally to the presence of 

residual twins shown in Fig.19 for the ZEK100 fatigued samples.  

 

4. Conclusions 
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The strain-controlled low cycle fatigue properties and pseudo-elastic behavior of a low (0.2 wt.%) 

rare-earth element Nd-containing wrought ZEK100 magnesium alloy in an annealed state were 

studied. The following conclusions can be drawn from this investigation:  

1) The microstructure of the ZEK100 alloy in the annealing state consisted of equiaxed 

grains due to the occurrence of dynamic recrystallization. The alloy also contained some 

Mg12Nd and MgZn particles. The addition of 0.2 wt.% Nd along with 1.3 wt.% Zn and 0.25 

wt.% Zr in the alloy led to the weakening of basal texture in comparison with the extruded 

RE-free AZ31 and AM30 alloys.  

2) While slight cyclic softening was observed at high strain amplitudes of 1.0% and 1.2%, 

cyclic stabilization basically occurred at lower strain amplitudes. The fatigue life of the 

ZEK100 alloy determined via the strain-controlled fatigue tests was longer than that of the 

extruded RE-free Mg alloys, as a result of a fairly good combination of strength with 

ductility in this alloy. 

3) Although the stress-strain hysteresis loops of the ZEK100 alloy were not so symmetrical 

as those of the high (~10 wt.%) RE-containing Mg alloys, the extent of asymmetry and 

skewness of the loops was effectively improved in comparison with the extruded RE-free 

AZ31 and AM30 alloys. This indicated that the small addition of 0.2 wt.% Nd in the ZEK100 

alloy played a significant role in overpowering the incidence of excessive twinning via 

texture weakening and grain refinement. 

4) While the anelastic (or non-linear or pseudo-elastic) behavior exhibited a decreasing trend 

with the addition of RE elements in Mg alloys, it still largely remained, which was accounted 

as an additional term in calculating the total strain range, i.e., anpet εεεε ∆+∆+∆=∆ . The 
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total anelastic strain range ( anε∆ ) further consisted of two components of tensile and 

compressive anelastic strain ranges. 

5) Three parameters (i.e., eccentricity, the angle deviation, and the relative slope change) 

were introduced to quantify the asymmetry and skewness of the hysteresis loops. The results 

evaluated for the current ZEK100 alloy lay always in-between those for the RE-free Mg 

alloys and high RE-containing Mg alloys. 

6) Fatigue crack initiation was observed to occur from the specimen surface or near-surface 

imperfections. Crack propagation region encompassed fatigue striation-like features, which 

were normal to the crack propagation direction.   
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Table captions 

 

Table 1 Chemical composition of ZEK100 Mg alloy sheet (wt.%). 

Table 2 Tensile properties of ZEK100 alloy obtained at a strain rate of 1 × 10
-2

 s
-1

 at room 

temperature. 
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Table 3 Low cycle fatigue parameters obtained for the rolled ZEK100 Mg alloy. 

Table 4 Parameters proposed to describe the non-linear characteristics in Mg alloys.  

 

Figure captions 

 

Fig.1  Fatigue test specimen geometry and dimensions (in mm) for the ZEK100 Mg alloy. 

 

Fig.2 Three-dimensional image of the microstructure of the rolled ZEK100 Mg alloy, where 

RD stands for the rolling direction, TD denotes the transverse directions, and ND 

indicates the normal direction. 

Fig.3 (a) A typical SEM back-scattered electron image, and (b) EDS line scan results across a 

position indicated by the dashed line in (a).  

Fig.4  X-ray diffraction pattern of the ZEK100 Mg alloy. 

Fig.5 SEM back-scattered electron image specifying EDS point analysis locations and the 

corresponding composition at particles A and B, respectively.  

Fig.6 ODF sections at ϕ2=0° and ϕ2=30° of the ZEK100 Mg alloy. 

Fig.7 Main texture components A and B identified from the Euler angles. 

Fig.8 Characteristic stress-strain hysteresis loops of the (a) first cycle, (b) second cycle, and (c) 

mid-life cycle at a total strain amplitude of 1.2% and strain ratio Rs=−1 for the rolled 

ZEK100 alloy, in comparison with the extruded AM30 and GW103K alloys [18,21]. 

Fig.9 Stress amplitude vs. the number of cycles at different total strain amplitudes. 

Fig.10 Plastic strain amplitude vs. the number of cycles at different total strain amplitudes.  

Fig.11 Total strain amplitude as a function of the number of cycles to failure for the rolled ZEK100 

Mg alloy, in comparison with the data reported in the literature for various wrought Mg alloys. 
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Fig.12 Evaluation of strain-life fatigue parameters in the form of log-elastic, plastic and total 

strain amplitudes vs. log-number of reversals to failure, respectively. 

Fig.13 Cyclic stress-strain curves (CSSC) at mid-life cycles at a strain ratio of Rs=−1 in the 

ZEK100 Mg alloy. 

Fig.14 SEM micrographs of overall fracture surfaces of the specimens fatigued at a strain 

amplitude of (a) 0.4% and (b) 1.0%, respectively, and near crack initiation area at (c) 0.4% 

and (d) 1.0% as well.           

Fig.15 SEM micrographs of the fatigue crack propagation area in the specimens fatigued at a 

strain amplitude of (a) 0.4% and (b) 1.0%, respectively. 

Fig.16 Stress-strain hysteresis loops of mid-life cycles at a total strain amplitude of 1.2% and a 

strain ratio Rs= − 1 for the rolled ZEK100, extruded AM30 and GW103K alloys, 

respectively, showing the definition of eccentricity values of these alloys along the strain 

axis. 

Fig.17 Stress-strain hysteresis loops of mid-life cycles at a total strain amplitude of 1.2% and 

strain ratio of Rs=−1 for (a) extruded AM30, (b) rolled ZEK100, and (c) GW103K alloys, 

respectively, showing the parameters of slope change and angle deviation.  

Fig.18 Stress-strain hysteresis loop of mid-life cycle at a total strain amplitude of 1.2% and 

strain ratio of Rs=−1 for the rolled ZEK100 Mg alloy, illustrating the anelastic behavior in 

tension and compression separately. 

Fig.19 (a) Optical micrographs of the areas near the fracture surface, showing the overall 

distribution of residual twins in a sample of ZEK100 alloy fatigued at a strain amplitude 

of 1.2% with emphasis on two regions (b) and (c), respectively. 
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Table 1 Chemical composition of ZEK100 Mg alloy sheet (wt.%). 

Base material Zn Zr Nd Mn Mg 

ZEK100 1.3 0.25 0.2 0.01 Bal. 

 

 

Table 2 Tensile properties of ZEK100 alloy obtained at a strain rate of 1 × 10
-2

 s
-1

 at room 

temperature. 

 σYS, MPa σUTS, MPa Elongation, % n σUTS / σYS 

ZEK100 225 300 13.3 0.18 1.33 

 

 

 

Table 3 Low cycle fatigue parameters obtained for the rolled ZEK100 Mg alloy. 

 

 

 

 

 

 

Table 4 Parameters proposed to describe the non-linear characteristics in Mg alloys.  

 AM30 ZEK100 GW103K 

Eccentricity along the strain axis (e), % eA = 0.25 eZ = 0.1  eG = 0.02  

Relative slope change (d), % dA = 34.5 dZ = 15.8  dG = 4.6  

Angle deviation (∆α), degrees ∆αA = 11.5° 
∆αZ = 5.1° 

∆αG = 1.0° 

Low cycle fatigue parameters  ZEK100 

Cyclic strain hardening exponent, n' 0.15 

Cyclic strength coefficient, K', MPa 542 

Fatigue strength coefficient, σ'f, MPa 654 

Fatigue strength exponent, b -0.14 

Fatigue ductility coefficient, ε'f 0.18 

Fatigue ductility exponent, c -0.68 
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Tensile anelastic strain range (
tan−∆ε ), % 0.055 0.045 0.025 

Compressive anelastic strain range (
can −∆ε ), % 0.11 0.08 0.075 

Total anelastic strain range (
anε∆ ), % 0.165 0.125 0.1 

 

 

 

 

 

 

 

Fig.1 Fatigue test specimen geometry and dimensions (in mm) for the ZEK100 Mg alloy. 

 

     

 

 
 

Fig.2 Three-dimensional image of the microstructure of the rolled ZEK100 Mg alloy, where RD 

stands for the rolling direction, TD denotes the transverse directions, and ND indicates the 

normal direction. 
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Fig.3 (a) A typical SEM back-scattered electron image, and (b) EDS line scan results across a 

position indicated by the dashed line in (a).  
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Fig.4 X-ray diffraction pattern of the ZEK100 Mg alloy. 

 

 

 
 

 

 

 

 

 

Fig.5 SEM back-scattered electron image specifying EDS point analysis locations and the 

corresponding composition at particles A and B, respectively.  
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ZEK100 Schematic ODF 

       

 

                        

 

 

 

 

Fig.6 ODF sections at ϕ2=0° and ϕ2=30° of the ZEK100 Mg alloy. 
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Fig.7 Main texture components A and B identified from the Euler angles. 
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Fig.8 Characteristic stress-strain hysteresis loops of the (a) first cycle, (b) second cycle, and (c) 

mid-life cycle at a total strain amplitude of 1.2% and strain ratio Rs=−1 for the rolled ZEK100 

alloy, in comparison with the extruded AM30 and GW103K alloys [18,21]. 
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Fig.9 Stress amplitude vs. the number of cycles at different total strain amplitudes. 

  

 
Fig.10 Plastic strain amplitude vs. the number of cycles at different total strain amplitudes.  
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Fig.11 Total strain amplitude as a function of the number of cycles to failure for the rolled ZEK100 

Mg alloy, in comparison with the data reported in the literature for various wrought Mg alloys. 

 
Fig.12 Evaluation of strain-life fatigue parameters in the form of log-elastic, plastic and total 

strain amplitudes vs. log-number of reversals to failure, respectively. 
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Fig.13 Cyclic stress-strain curves (CSSC) at mid-life cycles at a strain ratio of Rs=−1 in the 

ZEK100 Mg alloy. 
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Fig.14 SEM micrographs of overall fracture surfaces of the specimens fatigued at a strain 

amplitude of (a) 0.4% and (b) 1.0%, respectively, and near crack initiation area at (c) 0.4% and 

(d) 1.0% as well.           

 

                                                   

 

 

        
                      

Fig.15 SEM micrographs of the fatigue crack propagation area in the specimens fatigued at a 

strain amplitude of (a) 0.4% and (b) 1.0%, respectively. 
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Fig.16 Stress-strain hysteresis loops of mid-life cycles at a total strain amplitude of 1.2% and a 

strain ratio Rs=−1 for the rolled ZEK100, extruded AM30 and GW103K alloys, respectively, 

showing the definition of eccentricity values of these alloys along the strain axis. 
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Fig.17 Stress-strain hysteresis loops of mid-life cycles at a total strain amplitude of 1.2% and 

strain ratio of Rs=−1 for (a) extruded AM30, (b) rolled ZEK100, and (c) GW103K alloys, 

respectively, showing the parameters of slope change and angle deviation.  
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Fig.18 Stress-strain hysteresis loop of mid-life cycle at a total strain amplitude of 1.2% and strain 

ratio of Rs=−1 for the rolled ZEK100 Mg alloy, illustrating the anelastic behavior in tension and 

compression separately. 
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Fig.19 (a) Optical micrographs of the areas near the fracture surface, showing the overall 

distribution of residual twins in a sample of ZEK100 alloy fatigued at a strain amplitude of 1.2% 

with emphasis on two regions (b) and (c), respectively. 
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Research Highlights 

 

• Low (0.2 wt.%) Nd-containing ZEK100 alloy exhibits a relatively weak basal texture. 

• Cyclic stabilization sustains at lower strain amplitudes. 

• Longer fatigue life is obtained for this alloy than for rare earth-free Mg alloys.  

• Asymmetry and skewness of hysteresis loops are quantified through three parameters. 

• Pseudo-elastic behavior still remains in the Mg alloy despite rare earth additions. 

 

 

 

 


