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A B S T R A C T   

For most of Al–Mg–Si-(Cu) alloys and their composites, artificial aging hardening can be impaired by precedent 
natural aging. In this study, a pre-aging treatment before natural aging was adopted to improve the hardness of 
the artificially aged SiCp/6092Al composite and 6092Al alloy. Effects of the multi-step aging treatment, 
including pre-aging, natural aging and final artificial aging, on microstructures and mechanical properties were 
investigated by the hardness test, conductivity test, differential scanning calorimetry and transmission electron 
microscopy. It was shown that pre-aging exhibited a more obvious improvement in the final hardness in the 
composite, compared to that in the 6092Al alloy. The supersaturated solute atoms formed clusters during natural 
aging after pre-aging, but the clustering behaviors were different between the composite and 6092Al alloy, 
leading to the different pre-aging hardening effects. In the composite, it was easy for supersaturated solute atoms 
to participate into pre-aging clusters during natural aging. As pre-aging clusters could transform into precipitates 
during artificial aging, precipitate sizes were not affected by natural aging. In contrast, in the 6092Al alloy, it was 
easy for supersaturated solute atoms to form new clusters during natural aging after pre-aging. As it was difficult 
for these new clusters to transform into precipitates during artificial aging, precipitates were enlarged with 
prolonged natural aging time. Because the clustering behaviors during natural aging after pre-aging showed 
different effects on precipitation, the hardness after artificial aging did not change with prolonged natural aging 
time in the composite but decreased in the 6092Al alloy.   

1. Introduction 

SiC particles (SiCp) reinforced aluminum matrix composites have 
received significant attention in aerospace and defense applications due 
to their high modulus and strength, excellent wear resistance and fatigue 
properties [1–5]. Heat-treatable aluminum alloys (2xxx, 6xxx and 7xxx 
series alloys) are ideal matrices for aluminum matrix composites to 
achieve great load-bearing capabilities [3,6–9]. In general, these com
posites are applied after T6 treatment, which consists of solution, 
quenching and artificial aging (AA). However, the artificially aged 
composites often show poor ductility, which limits the cold plastic 
forming performance, such as quenching distortion correction and 
stamping. 

The ductility of the composites is significantly affected by the matrix. 
Al–Mg–Si-(Cu) (6xxx series) alloys have high ductility and weak hard
ening in the natural aging (NA) state [10,11], which makes it possible 
for SiCp/6xxxAl composites to be plastically formed during NA, and 

served after AA. 
The plastic forming requirements imply that SiCp/6xxxAl compos

ites should be supplied sometimes in the NA state, so these composites 
will experience NA before AA. It was reported that for Al–Mg–Si-(Cu) 
alloys and their composites with Mg + Si > 1 wt%, AA hardness could be 
impaired by precedent NA. This phenomenon was called the negative 
NA effect [3,12–14]. 

After solution and quenching, solute atoms are supersaturated in the 
Al matrix. Due to the size mismatch between solute atoms and Al atoms, 
each solute atom will strain the Al matrix. In order to reduce energy, 
supersaturated solute atoms tend to form clusters by diffusion during 
NA. Due to the low NA temperature, short-range diffusion is dominant 
[15]. Clusters can be formed only based on neighboring atoms; hence, 
the composition distribution of NA clusters is discrete. It is commonly 
believed that the Mg/Si ratios of most NA clusters are far from 1. It is 
difficult for these clusters to act as nucleation sites or precursors of 
precipitates during AA, but they act as traps of vacancies, leading to the 
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reduced vacancy concentration. As vacancies are important nucleation 
sites of AA precipitates [12,13,16,17], the nucleation of precipitates 
during AA is restricted. Partial precipitates preferentially grow at 
limited nucleation sites, resulting in enlarged average precipitate sizes 
and broadened precipitate size distribution, which impairs the hard
ening ability of AA [18,19]. 

Pre-aging (PA) treatments at temperatures above 70 ◦C are widely 
conducted immediately after quenching to improve the AA hardness of 
naturally aged Al–Mg–Si-(Cu) alloys [20–22]. The clusters formed dur
ing PA inhibit the clustering behavior during NA [17]. The high PA 
temperatures make long-range diffusion feasible. To achieve higher 
electronic and elastic stability, Mg/Si ratios of PA clusters are uniform 
and close to 1 [15]. It is widely accepted that these PA clusters can 
constitute precipitates during AA [16,17]; hence, PA can inhibit the 
negative NA effect and thus improve AA hardness. 

It is expected that the multi-step aging treatment, including PA, NA 
and final AA, would be effective in SiCp/6xxxAl composites to achieve 
good plastic forming performances and high service strength. Although 
the effects of PA on AA hardening have been investigated widely in 
Al–Mg–Si-(Cu) alloys, little attention has been paid to SiCp/6xxxAl 
composites. SiCp can significantly change the conditions of the Al ma
trix. For example, interface reactions between SiCp and the Al matrix 
can deplete Mg and increase the content of Si, resulting in a reduced Mg/ 
Si ratio [23–26]. Further, the coefficient of thermal expansion of SiCp is 
4.30 × 10− 6 K− 1, while that of the Al matrix is 23.63 × 10− 6 K− 1 [27]. 
During quenching, such a huge thermal mismatch can lead to inhomo
geneous plastic deformation in the Al matrix, and then results in sta
tistically stored dislocations [28,29]. These dislocations can annihilate 
vacancies, thereby reducing vacancy concentrations [30]. The aforesaid 
factors can affect the clustering and precipitation behaviors during 
aging, for instance, by accelerating the kinetics and changing the fea
tures of clusters or precipitates [31–33]. To apply the results of 6xxxAl 
alloys to SiCp/6xxxAl composites, it is necessary to investigate how 
these factors affect the PA hardening effect. 

In this work, the multi-step aging treatment, including PA, NA and 
final AA, was conducted in the SiCp/6092Al composite and 6092Al 
alloy. The aims of this study are to (i) clarify the difference in PA 
hardening effects between the composite and 6092Al alloy; (ii) elucidate 
the related mechanisms. 

2. Experimental procedure 

17 vol%SiCp/6092Al composite and 6092Al alloy were fabricated by 
powder metallurgy (PM) technology, using SiCp (99.5 pct. purity) and 
6092Al alloy powders with the nominal composition of Al-1.2Mg-0.6Si- 
1.0Cu (wt.%). The nominal sizes of SiCp and alloy powders were 7 μm 
and 13 μm, respectively. 

Fig. 1 shows the schematic diagram of fabrication and heat treatment 
processes. First, the raw powders were mechanically blended for 6 h 
with a rate of 50 rpm and a ball to powder ratio of 1:1. Second, the as- 
mixed powders were cold pressed in a cylindrical die under a pressure of 
50 MPa. Third, the cold-pressed powders were sintered at 600 ◦C in a 
vacuum, and then hot pressed into dense billets. 

The PM billets were hot extruded to bars at 450 ◦C with an extrusion 
ratio of 16:1 under an extrusion rate of 1 mm/s. Rectangular samples, 
with sizes of 20 mm (along the extrusion direction) × 12 mm × 5 mm, 
were machined from the extruded bars, solutionized at 540 ◦C for 3 h, 
and then water quenched to room temperature (RT). The as-quenched 
samples were subjected to various aging treatments as shown in Table 1. 

Brinell hardness and Vickers hardness were measured using a Testor 
1080 hardometer under a load of 250 kg and an FV-700 hardometer 
under a load of 10 kg, respectively. The samples were ground using 
2000# sandpapers before the measurements. At least four hardness 
values for each sample were acquired to calculate the average value. 
Conductivity was measured using a D60K conductivity tester. Each 
sample was measured thrice and the average value was calculated. 

Differential scanning calorimetry (DSC) was carried out under an 
argon atmosphere from RT to 450 ◦C with a heating rate of 5 ◦C/min 
using the TA-Q1000 system. The baseline of pure Al measured with the 

Fig. 1. Schematic diagram of powder metallurgy, hot extrusion and heat treatment processes.  

Table 1 
Aging conditions and corresponding nominations.  

Sample 
nominations 

Aging conditions 

direct AA AA at 170 ◦C for 6 h immediately after quenching 
NAx/AA NA at RT then AA at 170 ◦C for 6 h, where x represents NA 

time 
PA-NAx PA then NAx 

PA-NAx/AA PA then NAx/AA  
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same heating process was subtracted. 
Microstructure examinations were conducted by optical microscopy 

(OM) and transmission electron microscopy (TEM, FEI Tecnai F20) 
equipped with high-angle annular dark-field (HADDF) and X-ray energy 
dispersive spectroscopy (EDS) detectors. Bright-field (BF), and high- 
resolution TEM (HRTEM) images were acquired with the electron 
beam parallel to the <001>Al zone axis. The TEM foil samples were 
dimpled and ion-milled at − 69 ◦C ~ -71 ◦C for the composite, and 
perforated by twin-jet electro-polishing using the electrolyte consisting 
of 1/3 HNO3 in CH3OH at about − 25 ◦C with a voltage of 12 V for the 
6092Al alloy. 

3. Results 

3.1. Variation of hardness during multi-step aging 

Fig. 2 shows the hardness of the composite and 6092Al alloy under 
various aging conditions. The hardness of the composite was always 
higher than that of the 6092Al alloy due to the direct (load transfer [34]) 
and indirect (quenching strain [35]) hardening effects of SiCp. 

Dashed and dotted lines in Fig. 2 represented the hardness in the 
direct AA and NA2w/AA states, respectively. The NA2w/AA samples 
exhibited lower hardness than the direct AA samples both for the com
posite and 6092Al alloy, indicating that NA exerted negative effects on 
AA hardening. The PA-NA2w/AA samples showed higher hardness than 
the NA2w/AA samples, indicating that PA can enhance the hardening 
response of the NA2w/AA samples. The improvement of hardness by PA 
in the NA2w/AA samples was named as the PA hardening effect in this 
study. 

The PA hardening effect is dependent on the features of clusters 
formed during PA, such as size, density and composition [16,17]. PA 
cluster features were complexly affected by PA temperature and PA time 
due to the diffusion-controlled cluster formation. Therefore, the PA 
hardening effect varied with PA time and PA temperature. For the 
composite, the PA-NA2w/AA hardness arrived at the highest value when 
PA was conducted at 170 ◦C for 15 min, indicating that this PA 
parameter was optimal. 

The PA hardening effect in the composite was stronger than that in 

the 6092Al alloy. ΔH, defined as the difference in hardness between the 
PA-NA2w/AA and NA2w/AA samples, was calculated to quantitatively 
describe the difference in the PA hardening effect between the com
posite and 6092Al alloy. Fig. 3 shows the variation of ΔH with PA pa
rameters in the composite and 6092Al alloy. The composite had larger 
ΔH than the 6092Al alloy under all PA parameters. The difference in ΔH 
between the composite and 6092Al alloy attained the largest value (6 
HB) when PA was conducted at 170 ◦C for 15 min; hence, this PA 
parameter was chosen for further analysis. 

Fig. 4 shows the variation of hardness with NA time of the PA-NAx/ 
AA samples. The hardness did not change with prolonged NA time in the 
composite but decreased in the 6092Al alloy. The decrement (7 HB) was 
nearly equal to the difference in ΔH between the composite and 6092Al 
alloy (6 HB, Fig. 3(a)); hence, the stronger PA hardening effect in the 
composite (compared to that in the 6092Al alloy) originated mainly 
from the suppressed negative NA effect. In most of the previous studies, 
the PA hardening effect was associated mainly with the PA temperature, 
PA time and PA cluster characteristic [21,36], but this study found that 
the NA stage after PA was critical. 

3.2. Microstructures near SiCp-Al interface 

The microstructures near SiCp-Al interfaces were critical to under
stand why PA had a stronger hardening effect in the composite. Fig. 5(a) 
shows the BF image of dislocations around SiCp. As mentioned above, 
these dislocations are generated during quenching, and are caused by 
the mismatch of thermal expansion coefficient of SiCp and the Al matrix 
[28,29]. The quenching dislocations can improve strength and hardness. 
The contribution can be approximately calculated by Eq. (1): 

Δσdis = βGb

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

12
̅̅̅
2

√
VSiCΔCTEΔT

(1 − VSiC)bdSiC

√

(1)  

where Δσdis is the contribution of quenching dislocations to yield 
strength, β = 1.25 is a strengthening coefficient, b=0.286 nm is the 
magnitude of the Burgers vector, G = 26.9 GPa is the shear modulus of 
aluminum at RT, VSiC = 0.17 and dSiC = 7 μm are the volume fraction and 
average size of SiCp, ΔCTE is the coefficient of thermal expansion 

Fig. 2. Hardness of (a, b) SiCp/6092Al composite and (c, d) 6092Al alloy in PA-NA2w/AA states under various PA processes: (a, c) PA at 170 ◦C for various time, (b, 
d) PA at various temperatures for 15 min. 
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mismatch between SiCp and the Al matrix (19.33 × 10− 6 K− 1), and ΔT is 
the difference between the solution and room temperatures (515 K). 

According to Eq. (1), Δσdis (~40 MPa) is mainly related to VSiC, dSiC, 
ΔCTE and ΔT. It is easy to understand that these quenching dislocations 
will not be affected by NA at RT or PA at 170 ◦C for such a short time (15 
min). Therefore, this study only gives the dislocation distribution in the 
PA-NA1h/AA composite as a representative. And the contribution of 
quenching dislocations to the hardness under different aging conditions 
is not discussed in detail. 

Fig. 5(a) shows that the dislocation zone extended about 2 μm away 
from the SiCp-Al interface to the Al matrix. Fig. 5(b) shows the sche
matic diagram of SiCp distribution. The surface distance of neighbor 
SiCp (λ) can be calculated by Eq. (2) [37]. 

λ=
(
1 − VSiC

1/3)

VSiC
1/3 dSiC (2) 

λ was about 6 μm in this study, larger than the width of the dislo
cation zone. Therefore, in addition to the dislocation zones, there also 
existed the dislocation-free zones in the composite. 

Chemical reactions in SiCp-Al interfaces were characterized. As 
shown in Fig. 6, Mg and O were clearly enriched in the interface. Cu was 
also enriched, but to a slight degree. However, these elements were 
uniform in the Al matrix as shown in the linear scanning image. The 
present phenomenon was consistent with the previous finding that the 
interface reactions did not affect element distributions in the Al matrix 
[32]. As the distribution of Mg and O in the SiCp-Al interface was highly 
relevant, the interface reactions were believed to mainly the oxidation of 
Mg. Our previous study has confirmed that SiO2 existed on the surfaces 
of SiCp [4]. It is well known that Mg and SiO2 could initiate the 
following chemical reactions during the fabrication of the composite 
[23–26]: 

2Mg+ SiO2→2MgO + Si (3)  

Mg+ 2SiO2 + 2Al→MgAl2O4 + 2Si (4) 

These chemical reactions would deplete Mg and increase the content 
of Si, such that the Mg/Si atom ratio of the composite was closer to 1 
than that of the 6092Al alloy (~2.5). 

3.3. AA precipitate observations 

3.3.1. Precipitates in the composite 
BF images of precipitates were observed in the composite under 

various aging conditions. Fig. 7(a and b) show precipitates in the NA2w/ 
AA composite. Fig. 8(a and b) and Fig. 9(a and b) show precipitates in 
the PA-NAx/AA (x = 1h and 2w) composite. The precipitates in both the 

Fig. 3. Variation of ΔH with PA parameters in PA-NA2w/AA SiCp/6092Al composite and 6092Al alloy: (a) PA at 170 ◦C for various times and (b) PA at various 
temperatures for 15 min. 

Fig. 4. Variation of hardness with NA time in PA-NAx/AA samples.  

Fig. 5. (a) BF image of dislocations around SiCp in PA-NA1h/AA composite; (b) schematic diagram of SiCp distribution, and illustration is corresponding OM image.  
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dislocation zone (Fig. 7(a) and Fig. 8(a, b)) and dislocation-free zone 
(Figs. 7(b) and Fig. 9(a, b)) were observed in each composite. Needle- 
shaped precipitates existed in all BF images. These precipitates were 
elongated along three equivalent <001>Al, which was consistent with 
the typical features of precipitates in 6xxx series alloys [38,39]. The 
needle-shaped precipitates had two types of cross-sections: dot-shaped 
and rectangle-shaped (as pointed by arrows). Their structures will be 
identified by HRTEM in Fig. 10. Dislocations were observed as repre
sented in Figs. 7(a) and 8(a, b), and some precipitates grew along these 
dislocations. 

Figs. 7–9(c, d) show the length distribution and average length of the 
needle-shaped precipitates. The standard deviation of precipitate length 
was also calculated to describe numerically the length distribution. The 
larger the standard deviation, the more discrete the precipitation length 
distribution. At least 100 precipitates from various images were counted 
for each sample to ensure the accuracy of the results. 

Compared to that in the NA2w/AA composite, the precipitate length 
distribution was more uniform and the average precipitate length was 
smaller in the PA-NAx/AA composite, both in the dislocation and 
dislocation-free zones. It was found that NA clusters could not act as 
nucleation sites or precursors of precipitates during AA, leading to the 
broadened precipitate size distribution and enlarged average precipitate 
sizes [3,18,19]. The smaller average length and more uniform length 
distribution of precipitates in the PA-NAx/AA composite mean that PA 
can mitigate the effects of NA clusters on AA precipitates. The reduced 
precipitate sizes can enhance the Orowan strengthening [40,41], so the 
hardness of the PA-NAx/AA composite was larger than that of the 
NA2w/AA composite. 

As shown in Fig. 8, in the dislocation zones, the precipitate length 
distribution and average precipitate length of the PA-NA1h/AA com
posite were similar to those of the PA-NA2w/AA composite. In the 
dislocation-free zones (Fig. 9), the PA-NA2w/AA composite showed 

Fig. 6. Typical HADDFimage (left image), corresponding EDS-mapping and linear scanning images (bottom right image) of SiCp/6092Al composite in PA-NA1h/AA 
state. Red line in HADDF image is the linear scanning area. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 7. BF images of precipitates in NA2w/AA composite observed in (a) dislocation and (b) dislocation-free zones; (c, d) corresponding results of length mea
surements of precipitates in Fig. 7(a and b). 
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Fig. 8. BF images of precipitates in (a) PA-NA1h/AA and (b) PA-NA2w/AA composite observed in dislocation zone; (c, d) corresponding results of length mea
surements of precipitates in Fig. 8(a and b). 

Fig. 9. BF images of precipitates in (a) PA-NA1h/AA and (b) PA-NA2w/AA composite observed in dislocation-free zones; (c, d) corresponding results of length 
measurements of precipitates in Fig. 9(a and b). 
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enlarged precipitate sizes compared to the PA-NA1h/AA composite, but 
the difference in the precipitate sizes was negligible. Because the pre
cipitates in the PA-NAx/AA composite were almost unaffected by NA, 
the hardness was not changed with prolonged NA time (Fig. 4). 

Fig. 10 shows the typical HRTEM and corresponding Fast Fourier 
Transforms (FFT) images. As shown in Fig. 10(a), the precipitates with 

the dot-shaped cross-section had a monoclinic structure with cell pa
rameters of a = 1.516 nm, c = 0.674 nm and β = 105.3◦, and were hence 
determined to be β’’ phases (probably Mg5Si6), the main strengthening 
phases in Al–Mg–Si-(Cu) alloys [42]. Fig. 10(b) shows that the pre
cipitates with the rectangle-shaped cross-section had a disordered 
structure and the cross-section was elongated along <001>Al, which 

Fig. 10. Typical HRTEM images and corresponding FFT patterns of precipitates in Figs. 7–9: (a) β’’ phases; (b) L phases; (c–d) precipitates along dislocations.  

Fig. 11. BF images of precipitates in 6092Al alloy in (a) NA2w/AA, (b) PA-NA1h/AA and (c) PA-NA2w/AA states; (d–f) corresponding results of length measurements 
of precipitates in Fig. 11(a–c). 
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coincided with L phases (uncertain composition but rich in Mg, Si and 
Cu) [18,43,44]. 

In the dislocation zones of the composite, two types of precipitates 
were observed along dislocations. Typical HRTEM and corresponding 
FFT images are shown in Fig. 10(c and d). Type I had a discrete distri
bution along dislocations (Fig. 10(c)), while type II was long and curved 
along dislocations (Fig. 10(d)). Both types of precipitates had no definite 
unit cells, and corresponding FFT patterns were noisy, indicating that 
these precipitates were disordered. Similar results were also observed in 
Al–Mg–Si–Cu alloys with pre-strain during NA [21,45,46], suggesting 
that quenching dislocations in the composite have the same effects on 
precipitate structures as deformation dislocations in Al–Mg–Si–Cu al
loys. Liu et al. [46] found that the Mg/Si/Cu atom ratio of these pre
cipitates was 4.5/3.4/1, similar to the composition of Q′ phases. 

3.3.2. Precipitates in the 6092Al alloy 
The precipitates in the NA2w/AA and PA-NAx/AA (x = 1h and 2w) 

6092Al samples were observed as a comparison to the composite. The 
measured precipitate length distribution and average precipitate length 
are shown in Fig. 11. Similar to the composite, the PA-NAx/AA 6092Al 
samples also exhibited smaller average length and more uniform length 
distribution of precipitates than the NA2w/AA 6092Al alloy sample. 
However, what different from the composite is that the PA-NA2w/AA 
6092Al sample had broader precipitate length distribution and larger 
average precipitate length compared to the PA-NA1h/AA 6092Al sam
ple, indicating that AA precipitation in the 6092Al sample was affected 
by NA. As the enlarged precipitates weakened the Orowan strengthening 
[40,41], the hardness of the 6092Al alloy in the PA-NA2w/AA state was 
lower than that in the PA-NA1h/AA state (Fig. 4). 

3.4. Clustering behavior characterizations during NA after PA 

3.4.1. DSC analysis 
Fig. 12 shows the DSC curves of the composite and 6092Al alloy 

tested after quenching (AQ), two-week NA (NA2w), PA at 170 ◦C for 15 
min (PA) and PA-NA2w. Exothermic peaks A existed in the AQ samples 
but disappeared in the NA2w samples, indicating that peaks A were 
related to the formation of NA clusters. Moreover, peaks A did not exist 
in the PA samples, but weaker exothermic peaks B arose at a higher 
temperature. Peaks B vanished in the PA/NA2w samples, suggesting that 
they were related to the clustering behavior during NA after PA. The 
existence of peaks B in the PA samples revealed that solute atoms could 
still form clusters during NA after PA both in the composite and 6092Al 
alloy, although the clustering behavior was inhibited by precedent PA. 
Endothermic peaks C were associated with the dissolution of clusters 
[18,47,48]. These peaks were obvious in the NA samples, but mitigated 
in the PA and PA/NA2w samples, indicating that PA clusters were more 
stable than NA clusters. Therefore, PA clusters could transform into 
precipitates during AA. 

Peaks D and E were considered as the formation of β’’ phases and L 
phases, respectively [49]. Compared to those in the AQ and NA2w 

samples, peaks D and E were weaker in the PA and PA-NA2w samples, as 
PA clusters can act as precipitate nucleation sites and thus reduce the 
heat effects of the formation of β’’ and L phases [50]. There also existed 
some peaks after peaks E, which were considered as the formation of Q 
phases (peaks F, the equilibrium phases of L phases) and β phases (peaks 
G, the equilibrium phases of β’’ phases) [49,51]. Q and β phases 
generally arose in the over-aging state. They were not found in TEM 
observations, indicating that the investigated samples in this study were 
not over-aged. 

3.4.2. Hardness and conductivity tests 
It was reported that clusters formed during NA, PA and PA-NAx only 

contained a few atoms, and were too small to visualize by TEM [15,52, 
53]. Hardness and conductivity tests were common methods for the 
indirect detection of clustering behaviors [52,54,55]. 

Fig. 13(a) shows the variation of hardness with NA time for the PA- 
NAx samples. The hardness first reduced and then increased with pro
longed NA time in both the composite and 6092Al alloy. However, the 
composite showed much lower hardness decrement and larger hardness 
increment compared to the 6092Al alloy. During NA after PA, the for
mation of clusters leads to the decrease of solute concentration in so
lution. Cluster formation can increase hardness, while solute reduction 
can reduce it. The much lower hardness decrement and larger hardness 
increment in the composite mean that NA clusters of the composite had 
stronger hardening ability compared to those of the 6092Al alloy. 

Fig. 13(b) shows the variation of conductivity with NA time for the 
PA-NAx samples. Conductivity was sensitive to cluster density [56]. The 
composite exhibited a much lower reduction in conductivity during NA 
after PA than the 6092Al alloy, indicating that the composite had much 
lower increment in cluster density during NA after PA, compared to the 
6092Al alloy. 

4. Discussion 

4.1. Different clustering behaviors during NA after PA in composite and 
6092Al alloy 

As shown in DSC results, supersaturated solute atoms still trended to 
form clusters during NA after PA. The clustering behaviors led to the 
change in hardness and conductivity. Although grain boundaries and 
quenching dislocations can also affect hardness and conductivity, it is 
easy to understand that grain sizes and dislocation density were not 
changed during NA due to the extremely low temperature (~25 ◦C). In 
the composite, the effects of load transfer by SiCp should also be 
considered. However, the contribution of load transfer to strength was 
linearly related to the strength of the Al matrix [34,57,58], and the 
hardness can also be regarded as such [41]. Fig. 13 shows that the 
variation of hardness and conductivity in the composite was different 
from that in the 6092Al alloy. It is considered that the difference mainly 
resulted from the distinct clustering behaviors of the composite and 
6092Al alloy, and the contributions of grain boundary, quenching 

Fig. 12. DSC curves of (a) SiCp/6092Al composite and (b) 6092Al alloy under various aging conditions.  
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dislocation and load transfer can be neglected as mentioned above. 
Supersaturated solute atoms can form independent clusters during 

NA or PA [15]. Different from the clustering behavior during NA or PA, 
supersaturated solute atoms can not only form independent clusters, but 
also participate into PA clusters during NA after PA [53,59]. 

As shown in Fig. 13, clusters of the 6092Al alloy exhibited much 
weaker hardening ability than those of the composite, but led to more 
significant reduction in conductivity. Therefore, it is inferred that solute 
atoms in the 6092Al alloy tended to form new clusters during NA after 
PA. 

Because clusters formed during NA, PA or PA-NAx are very small in 
sizes and have no defined structures [53], they can be considered as 
weak obstacles. As a result, the contribution of these clusters to hardness 
can be assumed to obey Friedel statistics [40]: 

Hcluster∝(rclusterfcluster) (6)  

where Hcluster is the contribution of clusters to hardness, rcluster is the 
average radius of clusters, and fcluster is the volume fraction of clusters. 
The formation of new clusters could increase fcluster, but these newly 
formed clusters were much smaller than PA clusters [53,59], and thus 
reduced rcluster. As a result, the hardening ability of these new clusters 
was weak. However, the formation of new clusters could increase cluster 
density, which decreased the mean free path of electrons [56,60] and 
thus reduced conductivity. 

The change in hardness and conductivity in the composite was 
opposite to that in the 6092Al alloy. Clusters formed during NA after PA 
in the composite had strong hardening ability, but had slight effects on 
conductivity. It is inferred that solute atoms tended to participate into 
PA clusters during NA after PA. The incorporation of solute atoms into 
PA clusters could increase rcluster and fcluster, which was beneficial for 
cluster strengthening. However, this clustering behavior could not in
crease the density of clusters, so the conductivity was only slightly 
reduced. The decrease in conductivity may result from the enhanced 
electron scattering ability of the single cluster due to the increased 
rcluster. 

4.2. Mechanisms for different clustering behaviors during NA after PA 

In Al–Mg–Si–Cu alloys, Mg and Si are the main elements to form 
clusters. Cu can also form clusters, but the clustering ability is much 
weaker than that of Mg and Si [36]. As mentioned above, the Mg/Si 
atom ratio of PA clusters is close to 1 (a little larger than 1 in Mg-rich 
alloys) [15,61]. As the Mg/Si atom ratio of the 6092Al alloy is far 
larger than 1 (~2.5), Mg will be much surplus after PA. The Mg atom 
radii is ~12% larger than the Al atom radii and the Si atom radii is ~6% 
smaller [62]. Hence, the incorporation of Mg into PA clusters will 
enlarge cluster volume strain. To avoid enlarging volume strain of PA 
clusters, solute atoms tend to form independent clusters with the assis
tance of vacancies during NA after PA in the 6092Al alloy. Although Cu 
(~15% smaller than Al radii [62]) can reduce cluster volume strain, 

most PA and NA clusters do not contain Cu due to the weak clustering 
ability of Cu in the Al matrix [36,63,64]. 

Vacancies are nucleation sites and diffusion channels for solute 
atoms [65]. As dislocations can annihilate vacancies, vacancy concen
tration in the composite is lower than that in the 6092Al alloy. As a 
result, it is difficult for independent clusters to form during NA after PA 
in the composite. Dislocations are also diffusion channels for solute 
atoms. Therefore, it is easy for solute atoms to participate into PA 
clusters along dislocations during NA in the dislocation zones of the 
composite. Further, chemical reactions in the SiCp-Al interfaces reduced 
the Mg/Si atom ratio of the Al matrix (Fig. 6). As a result, it is easier for 
Mg and Si in the composite to simultaneously incorporate PA clusters 
during NA, compared to those in the 6092Al alloy. 

4.3. Effects of different clustering behaviors during NA after PA on AA 
precipitation and hardness 

β’’ phases, L phases and disordered phases along dislocations were 
the main precipitates in this study (Fig. 10). Their Mg/Si atom ratios 
were all close to 1 [42,46,66]. It is widely accepted that the Mg/Si atom 
ratio of PA clusters is also close to 1, so it is easy for PA clusters to 
constitute precipitates during AA [17]. Solute atoms in the composite 
tend to participate into PA clusters during NA after PA, with the result 
that the AA precipitate size of the composite was almost unchanged with 
prolonged NA time, especially in the dislocation zones (Figs. 8 and 9). 
Although the incorporation of solute atoms during NA may change the 
composition of PA clusters, this change is slight because the NA clus
tering behavior is limited by precedent PA. 

In contrast, as mentioned above, clusters formed during NA have 
discrete Mg/Si atom ratios [15]. It is known that most NA clusters 
cannot transform into precipitates during AA, but trap vacancies, lead
ing to the limited precipitate nucleation and thus larger precipitate size 
[12,13,16,17]. As it is easy for solute atoms in the 6092Al alloy to form 
new clusters during NA after PA, AA precipitates of the 6092Al alloy 
were enlarged with prolonged NA time (Fig. 11). 

Due to the effects of the clustering behavior during NA after PA on 
precipitation being different in the composite and 6092Al alloy, AA 
hardness of the composite was not affected by NA after PA, while that of 
the 6092Al alloy was impaired with prolonged NA time. Eventually, PA 
showed a stronger hardening effect in the composite than that in the 
6092Al alloy. 

This study also provide inspiration for future researches that in 
addition to the PA stage, the NA stage after PA should also be heeded 
when evaluating the PA hardening effect. 

5. Conclusions 

The effects of the multi-step aging treatment, including PA, NA and 
final AA, on the microstructures and mechanical properties of the SiCp/ 
6092Al composite and 6092Al alloy were investigated comprehensively 
using the hardness test, differential scanning calorimetry, conductivity 

Fig. 13. Variation of (a) hardness and (b) conductivity with NA time in PA-NAx samples.  
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test and transmission electron microscopy. The conclusions are sum
marized below: 

1. PA could improve the hardness of the NAx/AA samples. The com
posite had a stronger PA hardening effect than the 6092Al alloy.  

2. Hardness in the PA-NAx/AA state was not changed with prolonged 
NA time in the composite but decreased in the 6092Al alloy; hence, 
PA showed the stronger hardening effect in the composite.  

3. The NA stage after PA led to the enlarged AA precipitate size of the 
6092Al alloy, but had negligible effects on AA precipitates of the 
composite. Therefore, NA exhibited different effects on AA hardness 
in the composite and 6092Al alloy.  

4. Supersaturated solute atoms tended to participate into PA clusters 
during NA after PA in the composite, while it was easy for them to 
form new clusters in the 6092Al alloy. PA clusters could transform 
into AA precipitates but NA clusters could not; hence, AA precipitates 
sizes did not change with prolonged NA time in the composite, 
whereas it was enlarged in the 6092Al alloy. 
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