中国科学院金属研究所
联系我们  了解金属所
团队组成
在职职工
在读研究生
毕业研究生
博士后
当前栏目:在职职工 回到首页
王宇佳
2018-07-06  |          【 】【打印】【关闭

  

  王宇佳, 男,工学博士

  副研究员,中国科学院金属研究所

  * 联络方式

  电话:(024) 23971780
  电邮:yjwang@imr.ac.cn
  传真:(024) 23891320

  简历

  2015.10–2016.04,美国华盛顿大学,访问学者
  2014.09–现在,中国科学院金属研究所,副研究员
  2012.07–2014.09,中国科学院金属研究所,助理研究员
  2006.09–2012.06,中国科学院金属研究所,材料物理与化学,工学博士
  2002.09–2006.06,华中科技大学,电子科学与技术,工学学士

  研究领域

  1. 钙钛矿结构铁性氧化物的显微结构与性能的多尺度计算模拟(第一原理和相场模拟)。
  2. 定量电子显微学。

  承担科研项目情况

  紧密结合透射电子显微镜,利用多种尺度的计算模拟方法,对以铁电薄膜为主的材料中的科学问题进行研究,在包括Science,Science Advances,Nature Communications,ACS Nano,Nano Letters,Acta Materialia等SCI检索的国际学术期刊上发表论文30余篇。具体研究成果有:

  (1)第一原理方面
  采用基于密度泛函理论的第一原理计算方法,对铁电薄膜的界面和畴壁结构等科学问题进行研究。其中具有代表性的研究成果有界面氧八面体耦合导致的极化旋转和相变(ACS Nano 2018,Acta Materialia 2018),PbTiO3/BiFeO3界面氧空位导致极化巨大增强(Nano Letters 2017),PbTiO3中180度畴壁的手性、弯电效应和带电台阶结构(Journal of Applied Physics 2014, 2017a, 2017b,2017c)等。

  利用第一原理和第一原理分子动力学等计算方法,对不锈钢点蚀的相关科学问题进行研究,其中具有代表性的研究成果有氯离子击破不锈钢钝化膜的机制(Nature Communications 2018),纳米尺度MnCr2O4八面体颗粒导致不锈钢中MnS夹杂相局域溶解的机制(Acta Materialia 2010,The Journal of Physical Chemistry C 2011),MnS表面Mn离子的溶解机制(Physical Chemistry Chemical Physics 2013)等。

  (2)相场模拟方面
  基于热力学唯象理论,与美国华盛顿大学的研究人员合作编写针对铁电薄膜的相场模拟软件,将软件应用于铁电薄膜畴结构的研究课题中。其中具有代表性的研究成果有表面电荷对BiFeO3纳米点中极化的影响(Science Advances 2017),多层PbTiO3/SrTiO3薄膜中的畴结构随厚度比的演变(Nano Letters 2017)等。

  (3)定量电子显微学方面
  基于高斯拟合技术编写图像分析软件,从高分辨照片中提取原子坐标,进而获得晶格应变、晶格转角、离子相对位移等结构信息在每个单胞中的分布情况。通过解析畴结构和界面结构而对一系列重要的科学问题进行了深入研究。其中具有代表性的研究成果有四方PbTiO3薄膜中通量全闭合阵列的发现(Science 2015),菱方BiFeO3薄膜中位错阵列调控材料的功能特性(Nature Communications 2017)等。

  获奖及荣誉

  2011年获金属所青年人才报告会一等奖。
  2013年获沈阳材料科学国家(联合)实验室青年创新奖二等奖。

  代表论著

  (1) Zhang, S.; Guo, X.; Tang, Y.; Ma, D.; Zhu, Y.; Wang, Y.; Li, S.; Han, M.; Chen, D.; Ma, J.; Wu, B.; Ma, X. Polarization Rotation in Ultrathin Ferroelectrics Tailored by Interfacial Oxygen Octahedral Coupling. ACS Nano 2018, 12, 3681-3688. (https://doi.org/10.1021/acsnano.8b00862)
  (2) Zhang, B.; Wang, J.; Wu, B.; Guo, X. W.; Wang, Y. J.; Chen, D.; Zhang, Y. C.; Du, K.; Oguzie, E. E.; Ma, X. L. Unmasking chloride attack on the passive film of metals. Nature Communications 2018, 9, 2559. (https://doi.org/10.1038/s41467-018-04942-x)

  (3) Han, M. J.; Wang, Y. J.; Ma, D. S.; Zhu, Y. L.; Tang, Y. L.; Liu, Y.; Zhang, N. B.; Ma, J. Y.; Ma, X. L. Coexistence of rhombohedral and orthorhombic phases in ultrathin BiFeO3 films driven by interfacial oxygen octahedral coupling. Acta Materialia 2018, 145, 220-226. (https://doi.org/10.1016/j.actamat.2017.12.038)

  (4) Zhou, Y. T.; Zheng, S. J.; Jiang, Y. X.; Zhao, T. Z.; Wang, Y. J.; Ma, X. L. Atomic structure of the Fe/Fe3C interface with the Isaichev orientation in pearlite. Philosophical Magazine 2017, 97, 2375-2386. (https://doi.org/10.1080/14786435.2017.1332434)

  (5) Wang, Y.-J.; Zhu, Y.-L.; Ma, X.-L. Chiral phase transition at 180° domain walls in ferroelectric PbTiO3 driven by epitaxial compressive strains. Journal of Applied Physics 2017, 122, 134104. (https://doi.org/10.1063/1.5006607)

  (6) Wang, Y.-J.; Li, J.; Zhu, Y.-L.; Ma, X.-L. Phase-field modeling and electronic structural analysis of flexoelectric effect at 180° domain walls in ferroelectric PbTiO3. Journal of Applied Physics 2017, 122, 224101. (https://doi.org/10.1063/1.5017219)

  (7) Wang, W.-Y.; Zhu, Y.-L.; Tang, Y.-L.; Han, M.-J.; Wang, Y.-J.; Ma, X.-L. Atomic mapping of structural distortions in 109° domain patterned BiFeO3 thin films. Journal of Materials Research 2017, 32, 2423-2430. (https://doi.org/10.1557/jmr.2017.206)

  (8) Tang, Y. L.; Zhu, Y. L.; Liu, Y.; Wang, Y. J.; Ma, X. L. Giant linear strain gradient with extremely low elastic energy in a perovskite nanostructure array. Nature Communications 2017, 8, 15994. (https://doi.org/10.1038/ncomms15994)

  (9) Tang, Y. L.; Zhu, Y. L.; Hong, Z. J.; Eliseev, E. A.; Morozovska, A. N.; Wang, Y. J.; Liu, Y.; Xu, Y. B.; Wu, B.; Chen, L. Q.; Pennycook, S. J.; Ma, X. L. 3D polarization texture of a symmetric 4-fold flux closure domain in strained ferroelectric PbTiO3 films. Journal of Materials Research 2017, 32, 957-967. (https://doi.org/10.1557/jmr.2016.259)

  (10) Suriyaprakash, J.; Xu, Y. B.; Zhu, Y. L.; Yang, L. X.; Tang, Y. L.; Wang, Y. J.; Li, S.; Ma, X. L. Designing of metallic nanocrystals embedded in non-stoichiometric perovskite nanomaterial and its surface-electronic characteristics. Scientific Reports 2017, 7, 8343. (https://doi.org/10.1038/s41598-017-09031-5)

  (11) Liu, Y.; Zhu, Y.-L.; Tang, Y.-L.; Wang, Y.-J.; Li, S.; Zhang, S.-R.; Han, M.-J.; Ma, J.-Y.; Suriyaprakash, J.; Ma, X.-L. Controlled Growth and Atomic-Scale Mapping of Charged Heterointerfaces in PbTiO3/BiFeO3 Bilayers. ACS Applied Materials & Interfaces 2017, 9, 25578-25586. (https://doi.org/10.1021/acsami.7b04681)

  (12) Liu, Y.; Zhu, Y.-L.; Tang, Y.-L.; Wang, Y.-J.; Jiang, Y.-X.; Xu, Y.-B.; Zhang, B.; Ma, X.-L. Local Enhancement of Polarization at PbTiO3/BiFeO3 Interfaces Mediated by Charge Transfer. Nano Letters 2017, 17, 3619-3628. (https://doi.org/10.1021/acs.nanolett.7b00788)

  (13) Liu, Y.; Wang, Y.-J.; Zhu, Y.-L.; Lei, C.-H.; Tang, Y.-L.; Li, S.; Zhang, S.-R.; Li, J.; Ma, X.-L. Large Scale Two-Dimensional Flux-Closure Domain Arrays in Oxide Multilayers and Their Controlled Growth. Nano Letters 2017, 17, 7258-7266. (https://doi.org/10.1021/acs.nanolett.7b02615)

  (14) Li, Z.; Wang, Y.; Tian, G.; Li, P.; Zhao, L.; Zhang, F.; Yao, J.; Fan, H.; Song, X.; Chen, D.; Fan, Z.; Qin, M.; Zeng, M.; Zhang, Z.; Lu, X.; Hu, S.; Lei, C.; Zhu, Q.; Li, J.; Gao, X.; Liu, J.-M. High-density array of ferroelectric nanodots with robust and reversibly switchable topological domain states. Science Advances 2017, 3, e1700919. (https://doi.org/10.1126/sciadv.1700919)

  (15) Li, S.; Zhu, Y. L.; Wang, Y. J.; Tang, Y. L.; Liu, Y.; Zhang, S. R.; Ma, J. Y.; Ma, X. L. Periodic arrays of flux-closure domains in ferroelectric thin films with oxide electrodes. Applied Physics Letters 2017, 111, 052901. (https://doi.org/10.1063/1.4996232)

  (16) Li, S.; Zhu, Y. L.; Tang, Y. L.; Liu, Y.; Zhang, S. R.; Wang, Y. J.; Ma, X. L. Thickness-dependent a1/a2 domain evolution in ferroelectric PbTiO 3 films. Acta Materialia 2017, 131, 123-130. (https://doi.org/10.1016/j.actamat.2017.03.064)

  (17) Jiang, Y. X.; Wang, Y. J.; Chen, D.; Zhu, Y. L.; Ma, X. L. First-principles study of charged steps on 180° domain walls in ferroelectric PbTiO3. Journal of Applied Physics 2017, 122, 054101. (https://doi.org/10.1063/1.4997461)

  (18) Hu, X. B.; Guo, X. W.; Wang, Y. J.; Hou, J. S.; Qin, X. Z.; Zhou, L. Z.; Liu, J. F.; Ma, X. L. Microstructural characterization of the η-Ni3(Ti, Al) phase in a long-term-aged Ni-based superalloy. Philosophical Magazine Letters 2017, 1-8. (https://doi.org/10.1080/09500839.2017.1406193)

  (19) Wang, W. Y.; Zhu, Y. L.; Tang, Y. L.; Xu, Y. B.; Liu, Y.; Li, S.; Zhang, S. R.; Wang, Y. J.; Ma, X. L. Large scale arrays of four-state vortex domains in BiFeO3 thin film. Applied Physics Letters 2016, 109, 202904. (https://doi.org/10.1063/1.4967878)

  (20) Zhou, Y.; Wang, Y.; Zheng, S.; Zhang, B.; Ma, X. Strain-induced preferential dissolution at the dislocation emergences in MnS: an atomic scale study. Philosophical Magazine 2015, 95, 2365-2375. (https://doi.org/10.1080/14786435.2015.1052030)

  (21) Yang, B.; Liu, B.; Wang, Y.; Zhuang, H.; Liu, Q.; Yuan, F.; Jiang, X. Zn-dopant dependent defect evolution in GaN nanowires. Nanoscale 2015, 7, 16237-16245. (https://doi.org/10.1039/c5nr04771d)

  (22) Xue, Y. B.; Chen, D.; Wang, Y. J.; Tang, Y. L.; Zhu, Y. L.; Ma, X. L. The evolution of polarization inside ultrathin PbTiO3 films: a theoretical study. Philosophical Magazine 2015, 95, 2067-2077. (https://doi.org/10.1080/14786435.2015.1047810)

  (23) Wang, W.-Y.; Tang, Y.-L.; Zhu, Y.-L.; Xu, Y.-B.; Liu, Y.; Wang, Y.-J.; Jagadeesh, S.; Ma, X.-L. Atomic Level 1D Structural Modulations at the Negatively Charged Domain Walls in BiFeO3 Films. Advanced Materials Interfaces 2015, 2, 1500024. (https://doi.org/10.1002/admi.201500024)

  (24) Tang, Y. L.; Zhu, Y. L.; Ma, X. L.; Borisevich, A. Y.; Morozovska, A. N.; Eliseev, E. A.; Wang, W. Y.; Wang, Y. J.; Xu, Y. B.; Zhang, Z. D.; Pennycook, S. J. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films. Science 2015, 348, 547. (https://doi.org/10.1126/science.1259869)

  (25) Zhou, Y. T.; Xue, Y. B.; Chen, D.; Wang, Y. J.; Zhang, B.; Ma, X. L. Atomic-scale configurations of synchroshear-induced deformation twins in the ionic MnS crystal. Sci. Rep. 2014, 4, 5118. (https://doi.org/10.1038/srep05118)

  (26) Wang, Y. J.; Chen, D.; Tang, Y. L.; Zhu, Y. L.; Ma, X. L. Origin of the Bloch-type polarization components at the 180°domain walls in ferroelectric PbTiO3. Journal of Applied Physics 2014, 116, 224105. (https://doi.org/10.1063/1.4904192)

  (27) Tang, Y. L.; Zhu, Y. L.; Wang, Y. J.; Wang, W. Y.; Xu, Y. B.; Ren, W. J.; Zhang, Z. D.; Ma, X. L. Atomic-scale mapping of dipole frustration at 90 charged domain walls in ferroelectric PbTiO3 films. Sci. Rep. 2014, 4, 4115. (https://doi.org/10.1038/srep04115)

  (28) Wang, Y. J.; Hu, P.; Ma, X. L. Mn ion dissolution from MnS: a density functional theory study. Physical Chemistry Chemical Physics 2013, 15, 17112-17117. (https://doi.org/10.1039/C3CP52472H)

  (29) Yang, Z. Q.; Chisholm, M. F.; Yang, B.; Ma, X. L.; Wang, Y. J.; Zhuo, M. J.; Pennycook, S. J. Role of crystal defects on brittleness of C15 Cr2Nb Laves phase. Acta Materialia 2012, 60, 2637-2646. (https://doi.org/10.1016/j.actamat.2012.01.030)

  (30) Wang, Y. J.; Hu, P.; Ma, X. L. Oxygen Reduction Reaction on Metal-Terminated MnCr2O4 Nano-octahedron Catalyzing MnS Dissolution in an Austenitic Stainless Steel. The Journal of Physical Chemistry C 2011, 115, 4127-4133. (https://doi.org/10.1021/jp1108202)

  (31) Zheng, S. J.; Wang, Y. J.; Zhang, B.; Zhu, Y. L.; Liu, C.; Hu, P.; Ma, X. L. Identification of MnCr2O4 nano-octahedron in catalysing pitting corrosion of austenitic stainless steels. Acta Materialia 2010, 58, 5070-5085. (https://doi.org/10.1016/j.actamat.2010.05.043)

  (32) Ling, T.; Xie, L.; Zhu, J.; Yu, H.; Ye, H.; Yu, R.; Cheng, Z.; Liu, L.; Liu, L.; Yang, G.; Cheng, Z.; Wang, Y.; Ma, X. Icosahedral face-centered cubic Fe nanoparticles: facile synthesis and characterization with aberration-corrected TEM. Nano letters 2009, 9, 1572-1576. (https://doi.org/10.1021/nl8037294)

中国科学院金属研究所

材料界面及缺陷的电子显微学研究团队

版权所有 中国科学院金属研究所 辽ICP备05005387号