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Unified Tensile Fracture Criterion

Z. F. Zhang1,* and J. Eckert2
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences,

72 Wenhua Road, Shenyang, 110016, People’s Republic of China
2Department of Materials and Geo Sciences, Physical Metallurgy Division, Darmstadt University of Technology,

Petersenstrasse 23, D-64287 Darmstadt, Germany
(Received 21 November 2004; published 7 March 2005)
0031-9007=
We find that the classical failure criteria, i.e., maximum normal stress criterion, Tresca criterion, Mohr-
Coulomb criterion, and von Mises criterion, cannot satisfactorily explain the tensile fracture behavior of
the bulk metallic glass (BMG) materials. For a better description, we propose an ellipse criterion as a new
failure criterion to unify the four classical criteria above and apply it to exemplarily describe the tensile
fracture behavior of BMGs as well as a variety of other materials. It is suggested that each of the classical
failure criteria can be unified by the present ellipse criterion depending on the difference of the ratio
� � �0=�0.
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The deformation and fracture behavior of various struc-
tural materials or matter, such as metals, ceramics, inter-
metallics, rock, soil, concrete, etc., has been investigated
for more than 200 years, and many important theories or
rules were proposed and well developed. For brittle mate-
rials, for example, ceramics, intermetallics, rock, soil, and
concrete, their yield and failure often occur simultaneously
due to lack of plasticity or working hardening ability.
Among the failure criteria available, there are four classi-
cal ones, which have been widely used for the yield or
failure of brittle materials, as summarized in some text-
books [1–4].

As illustrated in Figs. 1(a) and 1(b), when one applies a
tensile stress �T to a specimen, the normal stress � and the
shear stress � on any shear plane � can be expressed as

� � �Tsin
2� (1a)

� � �T sin� � cos�: (1b)

Obviously, the maximum normal stress �max occurs on the
90� plane of the specimen. Therefore, the tensile failure
condition of the maximum normal stress criterion [1–4] is

�max � �0 (2)

at �0 < �0. �0 and �0 are, respectively, the critical normal
fracture stress and the shear fracture stress of the material.
The normal stress � and the shear stress � on any plane can
be described by a Mohr circle in a �-� coordinate, as
illustrated in Fig. 1(c). Apparently, the tensile failure con-
dition of a specimen results in �T � 90� at �T � �0.

Besides, the maximum shear stress �max occurs on a
plane inclined by 45� with respect to the tensile stress
axis, as shown in Fig. 1(b). Therefore, the tensile failure
condition of the Tresca criterion is at the maximum shear
stress plane, i.e.,

�max � �0:
05=94(9)=094301(4)$23.00 09430
The tensile failure of a specimen can be illustrated as in
Fig. 1(d). In the case of �0 <�0, the tensile shear frac-
ture will occur at �T � 45� according to the Tresca crite-
rion [1–4].

The Mohr-Coulomb criterion [1–4] was proposed in
1773, and it requires that the shear failure does not de-
pend only on the shear stress � but also on the normal stress
�, i.e.,

��	 � � � �0: (4)

Therefore, the tensile shear fracture plane will deviate
from the maximum shear stress plane of 45�, i.e., 45� <
�T < 90�, as illustrated in Fig. 1(e).

Another classical criterion is the von Mises criterion,
which was proposed in 1913 based on the distortion energy
theory [1–4], i.e.,

��1 � �2�
2 � ��2 � �3�

2 � ��3 � �1�
2 � 6Y2: (5a)

Here, �1, �2, and �3 are three principal stresses of the
specimen, and Y is a material constant. In the case of a two-
dimensional stress state, i.e., �3 � 0, the von Mises crite-
rion can be changed into

�2 � 3�2 � 3Y2: (5b)

According to this equation, the tensile failure of a speci-
men can be schematically illustrated as in Fig. 1(f), where
�0 �

���
3

p
�0 � Y. Therefore, the tensile shear fracture

should always result in �T � 60� according to the
von Mises criterion [1–4], as shown in the figure.

Altogether, the four classical criteria described above
can explain only different tensile failure modes. This raises
two crucial questions: (i) which failure criterion is more
suitable for various brittle materials? and (ii) is there a
unified tensile fracture criterion to describe all the possible
failure modes?

For ductile crystalline materials, slip deformation can
proceed only on some special low index lattice planes, such
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FIG. 2. Schematic illustration of the ellipse criterion at
different conditions: (a) � � �0=�o ! 0 or �o ! 1 and
�T � 45�; (b) 0<� � �0=�o <

���
2

p
=2 and 45� < �T < 90�;

(c) � � �0=�o �
���
2

p
=2 and �T � 90�.

FIG. 1. (a) Illustration of a tensile specimen and shear plane
and (b) distribution of normal stress � and shear stress � on any
shear plane of a tensile specimen. Schematic illustration of
tensile failure based on (c) maximum normal stress criterion
at �0 < 2�0 and �T � 90�, (d) Tresca criterion at �0 > 2�0 and
�T � 45�, (e) Mohr-Coulomb criterion at 45� < �T < 90�, and
(f) von Mises criterion at �T � 60�.
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as f111g planes in fcc metals or f0001g planes in hcp metals
[3–5]. During the last ten years, a new class of material,
i.e., bulk metallic glass (BMG), was discovered and at-
tracted worldwide attention due to its unique properties
[6,7]. Their plastic deformation and fracture are always
localized in some shear bands with little overall plasticity
[8–11]. However, up to now it is not clear for this type of
material which is the preferential shear plane (or yield
plane) under different loading modes. For example, when
a Zr52:5Ni14:6Al10Cu17:9Ti5 BMG is subjected to a tensile
load, the shear fracture occurs on a plane of around 56�

with respect to the tensile axis rather than 45�, as shown in
Fig. 1(c) in the literature [12]. The fracture surface often
exhibits radiating veinlike patterns, as shown in Fig. 2(b) in
the literature [12]. We have previously proposed that the
radiating veinlike patterns give evidence for a promotion
effect of the normal stress � on the tensile shear fracture
[12–14]. Besides, many other investigators also observed
an obvious deviation of the tensile shear fracture angle
from 45�; Table I lists the �T values of various BMGs
reported so far [8–24], covering several different alloy
09430
systems, such as Zr-, Cu-, Fe-, Co-, La-, Al-, Ni-, Pd-based
alloys, etc.

The findings outlined above strongly indicate that the
deviation of the tensile shear fracture plane from 45� is a
common phenomenon in BMGs. However, there is no
definite shear fracture plane in these materials, as for
example, f111g slip planes in crystals. First, in various
BMGs, �T obeys the following relationship [12]: i.e.,
45� < �T � 90�, indicating that the Tresca criterion is
invalid. Second, the maximum normal stress criterion can-
not explain why the BMG materials often fail in a shear
mode with different fracture angles (see Table I). The
von Mises criterion can explain only the case of �T �
60�, rather than 45� < �T � 90�, as illustrated in
Fig. 1(f). It seems that the Mohr-Coulomb criterion is
more suitable to describe the shear failure of BMGs on
an arbitrary shear plane [9,12,13,17,19,25]. However, the
Mohr-Coulomb criterion cannot explain why a BMG
specimen sometimes fails along a plane perpendicular to
the stress axis, i.e., �T � 90�, as listed in Table I.
Therefore, we can conclude that none of the four classical
criteria above can satisfactorily explain the tensile fracture
modes of BMGs, but it is necessary to develop a new
tensile failure criterion, which is more suitable for BMGs
or other brittle materials.

Let us come back to the von Mises criterion [Eq. (5b)]. It
proposes that the ratio of �0=�0 is a constant, i.e., �0=�0 ����
3

p
=3. However, this constant does not reflect possible

differences in the atomic structure or microstructure of
different classes of materials. Therefore, if one considers
the ratio � � �0=�0 to take an arbitrary value, then
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FIG. 3. Dependence of tensile fracture strength �T and tensile
shear fracture angle �T on the ratio � � �0=�o according to the
ellipse criterion. In a different range of � � �0=�o, each of the
four classical failure criteria can be unified by the present ellipse
criterion.

TABLE I. Comparison of the tensile shear fracture angle �T for different metallic glasses.

Investigators Compositions Fracture angle (�T) Ratio � � �0=�0

Alpas et al. [8] Ni78Si10B12 �55� 0.504
Bengus et al. [10] Fe70Ni10B20 �60� 0.577
Davis and Yeow [11] Ni49Fe29P14B6Si2 �53� 0.464
He et al. [14] Zr52:5Ni14:6Al10Cu17:9Ti5 55�–65� 0.504–0.625
Inoue et al. [15] Cu60Zr30Ti10 �54� 0.485
Inoue et al. [16] �Al84Y9Ni5Co2�0:95Sc5 �90� >0:707
Lee et al. [17] La62Al14�Cu;Ni�24 �90� >0:707
Lewandowski and Lowhaphandu [18] Zr40Ti12Ni9:4Cu12:2Be26:4 �55� 0.504
Liu et al. [19] Zr52:5Ni14:6Al10Cu17:9Ti5 53�–60� 0.464–0.577
Megusar et al. [20] Pd80Si20 �50� 0.384
Mukai et al. [21] Pd40Ni40P20 �56� 0.522
Noskova et al. [22] Co70Si15B10Fe5 �60� 0.577
Saida et al. [23] Zr80Pt20 �90� >0:707
Takayama [24] Pd77:5Cu6Si16:5 �51� 0.414
Zhang et al. [12] Zr52:5Ni14:6Al10Cu17:9Ti5 �56� 0.522
Zhang et al. [13] Zr59Cu20Al10Ni8Ti3 �54� 0.485
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Eq. (5b) can be expressed in a unified form, i.e.,

�2

�2
0

�
�2

�20
� 1: (6)

We define Eq. (6) as a new tensile failure criterion, here-
after named ‘‘ellipse criterion.’’ This new criterion indi-
cates that tensile failure is controlled by both the normal
stress � and the shear stress �. But the dependence of shear
stress � on normal stress � [Eq. (6)] is not linear, as the
Mohr-Coulomb criterion [9,12,13,17,19,25]. An illustra-
tion of the ellipse criterion is shown in Figs. 2(a)–2(c). The
shape of the ellipse depends on the ratio � � �0=�0 and
can be classified into four cases. When � � �0=�0 ! 0 or
�0 ! 1, �T should be quite close to 45�, which is con-
sistent with the Tresca criterion [see Fig. 1(d)]. When 0<
� � �0=�0 <

���
2

p
=2, �T will range from 45� to 90�, which

agrees well with the Mohr-Coulomb criterion. For � �

�0=�0 �
���
3

p
=3, one gets �T � 60�, indicating that the

von Mises criterion is a special case of the present ellipse
criterion. Finally, when � � �0=�0 �

���
2

p
=2, the tensile

fracture will always occur along the plane perpendicular
to the tensile axis, i.e., �T � 90� [see Fig. 2(c)]. This
means that the maximum normal stress criterion is also
one of the special cases for the present ellipse criterion.

Figure 3 shows the dependence of �T and �T on the ratio
� � �0=�0. Two points A and B are marked on the �T and
�T lines of the figure. Point A represents the position of the
Tresca criterion at � � �0=�0 ! 0. This results in �T !
45� and �T � 2�0. Point B represents the position of the
von Mises criterion at � � �0=�0 �

���
3

p
=3, in this case,

�T � 60� and �T � 2
��������
2=3

p
�0. In addition, there are two

regions marked by C and D in the figure. Region C contains
the Mohr-Coulomb fracture range at 0<� � �0=�0 <���
2

p
=2 and 45� < �T < 90�. Region D corresponds to the
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range of the maximum normal stress criterion at � �

�0=�0 �
���
2

p
=2 and �T � 90�. Based on the analysis

above, �T and �T can be expressed as functions of � �

�0=�0. When 0<� � �0=�0 <
���
2

p
=2,

�T � 2�0
���������������
1� �2

p
; (7a)

�T �
�
2
�
1

2
arctan

 �����������������
1� 2�2

p

�2

!
: (7b)

When � � �0=�0 �
���
2

p
=2,

�T � �0 � �0=�; (8a)

�T � 90�: (8b)

Since �T strongly depends on the ratio � � �0=�0, we can
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define � � �0=�0 as the factor determining the fracture
mode. Therefore, the details of the failure modes of a
material are controlled by the factor � � �0=�0 according
to the unified criterion.

In summary, the four well-established classical failure
criteria can be unified by the present ellipse criterion in
terms of the variation of � � �0=�0. The ratio � � �0=�0

reflects the difference in the bonding property between
atoms of different materials and, in return, controls the
macroscale fracture modes of the materials. When � �
�0=�0 ! 0, or �0 is extremely low, the ellipse criterion is
equivalent to the Tresca criterion and might be also suit-
able for the slip deformation in ductile crystalline mate-
rials, which obeys the Schmid law [3–5]. For example,
the critical resolved shear stress is nearly independent of
the orientation for single crystals [5]. When 0<� �

�0=�0 <
���
2

p
=2, �T is in the range of 45�–90� and is

consistent with Mohr-Coulomb and von Mises criteria.
From the data in Table I, where �T mainly varies between
50� and 65� for various BMGs, we can derive � �
�0=�0 � 0:384–0:625. This indicates that the extremely
high strength (1–5 GPa) of various BMGs [8–24] can be
attributed to the great increase in the shear resistance �0
in comparison with the critical resolved shear stress of
the crystalline materials. When � � �0=�0 �

���
2

p
=2, the

maximum normal stress �max will control the failure
mode, resulting in �T � 90�, which is consistent with the
maximum normal stress criterion. This might explain why
there is often a big asymmetry between tensile and com-
pressive strength and why cleavage failure is easier than
shear fracture in some brittle materials, such as rock,
intermetallics, ceramics, etc. [1–4]. Therefore, in terms
of the variation of � � �0=�0 (see Figs. 2 and 3), most
materials can be divided into three types: (i) ductile crys-
talline materials with low strength at � � �0=�0 ! 0,
(ii) high-strength materials, such as BMGs or nanostruc-
tured materials at � � �0=�0 � 1=3–2=3, and (iii) brittle
materials with high hardness at � � �0=�0 �

���
2

p
=2, such

as rock, intermetallics, ceramics, etc. Furthermore, due to
the great difference in the ratio � � �0=�0, the materials in
the world can display quite different fracture modes and
strength.
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